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In this paper, the differential transform method (DTM) and the 𝛼-parametrized 
differential transform method (𝛼–PDTM) are studied and linked by applying them to 
boundary value problems. Numerical solution obtained from the examples were 
compared with that of exact solution. The absolute error obtained from this evaluation 
showed that DTM has lower error margin and rapid convergence when likened to 𝛼–
PDTM. Tables for discrete and exact solutions were presented to show the efficiency 
of the two methods. Numerical computations were added and solution obtained 
showed that DTM is very precise and proficient method in distinction to 𝛼–PDTM. 
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1. Introduction 
 

Boundary value problems (BVPs) are used to model a variety of physical phenomena in all fields 
of natural research. Different methods of analysis are used to discover the accurate solutions of a 
particular type of linear differential equation. However, not all differential equations can be solved 
methodically. In general, basic analytical methods are incapable to fully handle non-linear and 
distinctive boundary value problems. Consequently, a range of approximatively and numerical 
techniques, such as the Variational Iterative Method (VIM), Adomian Decomposition Method (ADM), 
Finite Difference Method (FDM), Differential Transform Method (DTM), Homotopy Perturbation 
Method (HPM), and others, are helpful tools for recognizing and scrutinizing through the qualitative 
appearances of various differential equations with precise unknown solutions. 

The differential transform method (DTM) is one of the most popular and useful algorithms among 
semi-analytical techniques. To address IVPs in the field of electrical circuits, Zhou [1] originally 
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introduced this method in 1986.The technique's foundation comes from calculating the coefficients 
of the problem's solution's Taylor series. The technique was created to solve calculus of variations, 
integral equations, BVPs in one or more dimensions, and optimal control. It has been applied to the 
analysis of various physical phenomena with fractional and stochastic behavior, particularly in the 
last ten years.  

The fundamental benefit of this approach is that it doesn't require linearization and may be used 
directly on nonlinear ODEs. The well-known benefit of DTM is its broad variety of applications, 
extensive calculation accuracy, and ease of use. Another significant benefit is that this approach can 
significantly minimize the amount of computational work required while still accurately and quickly 
producing the series solution. This approach can be used to get exact solutions to differential 
equations or highly accurate findings. 

Chiou and Tzeng [2] utilized the Taylor transform to deal with nonlinear vibration problems, Chen, 
Ho [3] established this approach to solve a variety of linear and nonlinear issues, including boundary 
value issues with two points, and Ayaz [4] performed it on the system of differential equations. 
Abbasov et al., [5] used the method of differential transform to obtain approximate solutions of the 
linear and non-linear equations related to engineering problems and observed that the numerical 
results are in good agreement with the analytical solutions. In recent years, many authors have used 
this method for solving various types of equations. For example, this method has been used for 
differential-algebraic equations [6], partial differential equations [3,7-9], fractional differential 
equations [10] and difference equations [11]. Abazari et al., [12] applied this method for Schr¨odinger 
equations [12]. Different applications of DTM can be found in [13,14]. Khudair et al., [15] investigated 
some second-order random differential equations by DTM. Ünal and Gökdoğan [16] generalized DTM 
to solve not only classical differential equations but also fractional differential equations. Biswas and 
Roy [17] devoted the intuitionistic (fuzzy) differential transform method to solving Volterra-type 
fuzzy integrodifferential equations. Mukhtarov et al., [18] suggested a new generalization of DTM to 
investigate some spectral properties of a new type of boundary-value problem. The differential 
transform method (DTM), while a powerful numerical technique for resolving numerous initial value 
issues, is not without disadvantages. This is because the DTM is designed for problems with analytic 
solutions, or answers that can be extended into Taylor series. Our aim in this study is to tackle 
boundary value problems using DTM together with a modified version we call the α-parametrized 
differential transform method (α–PDTM). 
 
2. Materials and Methods 
2.1 Differential Transform Method (DTM): 
 
The DTM is developed based on Taylor series expansion and constructs an analytical solution in the 
form of polynomial. 
 
2.1.1 Definition 1: 

Taylor series of real or complex-valued function f(y) that is infinitely differentiable at real or complex 
number a is a power series. 
        𝑓(𝑦) = 𝑓(𝑎) − !"($)

&!
(𝑥 − 𝑎) + !""($)

(!
(𝑥 − 𝑎)( +⋯                                            (1) 

For n degree: 
 

𝑓)(𝑦) = ∑ &
*!

)
*+, (𝑓*(𝑎))(𝑦 − 𝑎)*                                             (2) 
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 𝑓)(𝑦) = ∑ &
*!

)
*+, (𝑥*(𝑎))(𝑦 − 𝑎)*                                      (3) 

Consider a function y(x) which is analytical in domain D and let 𝑥 = 𝑥! represent any point in D. The 
function y(x) is then represented by a power series whose center is located at 𝑥!.The differential 
transformation of the function y(x) is given by 

                                                                                                               (4) 

Where y(x) is original function, Y[K] is transformed function.     

Then, the inverse transformation is defined as, 

                                                                                                  (5) 

By combining equation (2.4) and (2.5) 

                                                                                   (6) 

The fundamental mathematical operations performed by the differential transform method are 
listed in following 

 

i. 𝑦(𝑥) = 𝑟(𝑥) ± 𝑝(𝑥)  then 𝑌(𝑘) = 𝑅(𝑘) ± 𝑃(𝑘) 
ii. 𝑦(𝑥) = 𝛼𝑟(𝑥) then 𝑌(𝑘) = 𝛼𝑅(𝑘) 

iii. 𝑦(𝑥) = -.(/)
-/

 then 𝑌(𝑘) = (𝑘 + 1)𝑅(𝑘 + 1) 

iv. 𝑦(𝑥) = -!.(/)
-/!

 then 𝑌(𝑘) = (𝑘 + 2)𝑅(𝑘 + 2) 

v. 𝑦(𝑥) = -".(/)
-/"

 then 𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2)… (𝑘 + 𝑏)𝑅(𝑘 + 𝑏) 

vi. 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) then 𝐹(𝑘) = ∑ 𝐺(𝑟)𝐻(𝑘 − 𝑟)*
.+,  

 

2.2. α-Parameterized Differential Transform Method (α-pDTM): 
 
In this section, we suggest a new version of classical differential transform method by following. 
 
2.2.1 Definition 2: 
 
Let g= [b, c] ⊂R be arbitrary real interval, h: g→R is function with infinite differentiation, α∈ [0, 1] 
any real parameter and N any integer, 
Then following notation represent it as, 

𝐷0(ℎ, 𝛼; 𝑘) = 𝛼𝐷1(ℎ; 𝑘) + (1 − 𝛼)𝐷2(ℎ; 𝑘)                                      (7) 

Where  𝐷1(ℎ; 𝑘) =
3#(1)
*!

 ,  𝐷2(ℎ; 𝑘) =
3#(2)
*!

 , 𝛼 ∈ [0,1], 𝑘 ∈ 𝑁                                    (8) 
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2.2.2 Definition 3: 

The sequence 

𝐷0(ℎ) = (𝐷0(ℎ, 𝛼; 1), 𝐷0(ℎ, 𝛼; 2), …)                                                      (9) 

Is known as the α-P transformation of the original function h(x). 

The differential inverse transform of 𝐷"(ℎ)	is defined as  

𝐸0F𝐷0(ℎ)G = ∑ 𝐷0(ℎ, 𝛼; 𝑘)(𝑥 − 𝑥0)4
*+,                                       (10) 

Should the series converge, where  𝑥" = 𝛼𝑏 − (1 − 𝛼)𝑐. 

If α=1 and α=0, then it will reduce to classical DTM at point x=b and x=c. 

The function  defined as 

ℎ0H(𝑥) = 𝐸0(𝐷0(ℎ))                                                       (11) 

Is said to be the α-parameterized approximation of the function h(x). 
 
2.2.3 Definition 4: 
 
An Nth α-parameterized approximation of the function is explored as 
ℎ0,6I(𝑥) = 𝐸0,6F𝐷0(ℎ)G = ∑ 𝐷(ℎ, 𝛼; 𝑘)(𝑥 − 𝑥0)6

*+,                                       (12) 

By using Definition 2, we can show that α- parameterized differential transform has the following 
properties: 

i. ℎ(𝑥) = 𝑘𝑔(𝑥), 𝑘 ∈ 𝑅, Then𝐷0(ℎ) = 𝑘𝐷0(𝑔). 
ii. ℎ(𝑥) = 𝑝(𝑥) ± 𝑞(𝑥) Then𝐷0(𝑝) ± 𝐷0(𝑞).  

iii. ℎ(𝑥) = -$7
-/$

, 𝑎 ∈ 𝑁 Then𝐷(ℎ$ , 𝛼; 𝑘) = (*8$)!
*!

𝐷(ℎ, 𝛼; 𝑘 + 𝑎). 

 
3. Results and Discussion  
3.1. Example 1 
 

Consider the Boundary value problem 
𝑦""(𝑥) + 𝑦(𝑥) = cos(𝑥) ,				𝑦(0) = 1, 𝑦(1) = 0                                       (13) 

Exact solution for equation (13) 

𝑦(𝑥) = 9%&

((:&89!)
(3𝑒( − 3𝑒(/ + 2𝑒&8(/ − 𝑒 𝑐𝑜𝑠(1) + 𝑒&8(/ 𝑐𝑜𝑠(1) + 𝑒/ 𝑐𝑜𝑠(𝑥) − 𝑒(8/𝑐𝑜𝑠	(𝑥) …     

                                                                                                    (14) 

3.1.1 Differential transform of example 1 

After applying DTM on equation (13) 

( )h xa


( )h xa

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(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) = 𝑌(𝑘) + &
*!
𝑐𝑜𝑠 T*;

(
U                                                      (15) 

𝑌(𝑘 + 2) = &
(*8&)(*8()

[𝑌(𝑘) + &
*!
𝑐𝑜𝑠 T*;

(
U]                                          (16) 

Let𝑌(0) = 𝐴	𝑎𝑛𝑑	𝑌(1) = 𝐵, we have for 𝑌(𝑘) 

𝑌(2) = &8<
(
, 𝑌(3) = =

>
, 𝑌(4) = <

(?
, 𝑌(5) = =

&(,
, 𝑌(6) = &8<

@(,
, 𝑌(7) = =

A,?,
, …                          (17) 

Series solution of DTM 

   𝑦(𝑥) = ∑ 𝑌(𝑘)𝑥* = 𝐴 + 𝐵𝑥 + &8<
(
𝑥( + =

>
𝑥B + <

(?
𝑥? + =

&(,
𝑥A +⋯	4

*+,                           (18) 

By applying boundary condition, we get our series expansion 

𝑦(𝑥) = 1.499577𝑥 + 9971836xB + 	0.1999436xA + 	0.019042247	x@ +⋯                              (19) 

3.1.2 𝛼 – Parametrized Differential transform of example 1 

After applying 𝛼 − 𝑃𝐷𝑇M on equation (13) 

(𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) − 𝐷(𝑦, 𝛼; 𝑘) = &
*!
𝑐𝑜𝑠 T*;

(
U                                                                 (20) 

𝐷(𝑦, 𝛼; 𝑘 + 2) = &
(*8&)(*8()

`𝐷(𝑦, 𝛼; 𝑘) + &
*!
𝑐𝑜𝑠 T*;

(
Ua                                          (21) 

Let    𝐷(𝑦, 𝛼; 0) = 𝐴,    𝐷(𝑦, 𝛼; 1) = 𝐵 

Put 𝑘 = 0,1,2,3,4,5,6,7…, we calculate 

	𝐷(𝑦, 𝛼; 2) = &8<
(

,	𝐷(𝑦, 𝛼; 3) = =
>

,	𝐷(𝑦, 𝛼; 4) = (<
B
	,	𝐷(𝑦, 𝛼; 5) = (=

&A
, 𝐷(𝑦, 𝛼; 6) = ?<

?A
	 , 𝐷(𝑦, 𝛼; 7) = ?=

B&A
      

                                                                                                      (22) 

By definition of 𝛼 – 𝑃𝐷𝑇M 

                                𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥0)*4
*+,                                           (23) 

Where   𝑥0 = 𝛼𝑎 + (1 − 𝛼)𝑏 

We get  

  	𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 1 + 𝛼)*4
*+,                                                          (24) 

By applying boundary conditions 

1 = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)*4
*+,                                          (25) 

  0 = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼)*4
*+,                            (26) 

By utilizing equation (24), (25) and (26) with 𝛼 = #
$!

, we get  
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                                              𝐴 = 0.95779,				𝐵 = 0.79479                                         (27) 

Hence 𝛼 – parametrized series solution is obtained up to N=7 

𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 1 + 𝛼)*4
*+,                                                                                              (28) 

           = 0.95779 + 0.79479(𝑥 + 𝛼 − 1) + 0.97889(𝑥 + 𝛼 − 1)( + 0.13246(𝑥 + 𝛼 − 1)B +
0.039907(𝑥 + 𝛼 − 1)? + 0.0066232(𝑥 + 𝛼 − 1)A + 0.0027191(𝑥 + 𝛼 − 1)> + 0.00015769(𝑥 + 𝛼 −
1)@…                                                                                                                                                      (29) 

Table for example 1 

Table 1 
Error obtained for example 1 using DTM and 𝛼-pDTM with k = 0...7 

X EXACT DTM 𝛂-pDTM 𝛂 = 𝟏/𝟐𝟎 ERROR WITH DTM ERROR WITH	𝛂-pDTM 

0.0 1.000000 1.000000 1.001888 0.000000 -0.001888 
0.2 0.861128 0.861127 0.867959 0.000001 -0.006831 
0.4 0.796019 0.796006 0.798123 0.000013 -0.002104 
0.6 0.799699 0.799571 0.794417 0.000128 0.005282 
0.8 0.868488 0.867789 0.860169 0.000699 0.008319 
1.0 1.000000 0.997371 0.999994 0.002629 0.000006 

 
Graph for example 1 

 
 

 

 

 

3.2 Example 2 
 

Consider the Boundary value problem 
𝑦"(x) − 4y(x) = sin(2x)	, 𝑦(0) = 1, 𝑦′(1) = 0                                           (30) 
 

Exact solution for equation (30) 

𝑦(𝑥) = &
C(&89')

𝑒:(/(8𝑒? + 8𝑒?/ − 𝑒(Cos[2] + 𝑒(8?/Cos[2] − 𝑒(/Sin[2𝑥] − 𝑒?8(/Sin[2𝑥])…    

                                                                                                      (31)             

3.2.1 Differential transform of example 02: 
 
After applying DTM on equation (30) 

Exact
DTM

DTM
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(𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) = 4𝑌(𝑘) + (#

*!
𝑠𝑖𝑛 T*;

(
U                                           (32) 

𝑌(𝑘 + 2) = &
(*8&)(*8()

[4𝑌(𝑘) + (#

*!
𝑠𝑖𝑛 T*;

(
U]                                                     (33) 

Let 𝑌(0) = 𝐴	𝑎𝑛𝑑	𝑌′(1) = 𝐵, we have for 𝑌(𝑘) 

𝑌(2) = 2𝐴, 𝑌(3) = (#&$')
)

, 𝑌(4) = $*
)
, 𝑌(5) = $'

#+
, 𝑌(6) = ,*

,+
, 𝑌(7) = (#&$')

)#+
, …            (34) 

Series solution of DTM 

𝑦(𝑥) = ∑ 𝑌(𝑘)𝑥* = 𝐴 + 𝐵𝑥 + 2𝐴𝑥( + &
B
(1 + 2𝐵)𝑥B + (</'

B
+ (D

&A
𝑥A + &8(=

B&A
𝑥> +⋯														4

*+, (35) 

By applying boundary condition, we get our series expansion 

𝑦(𝑥) = 1 − 2.19527𝑥 + 2𝑥( − 1.13018xB + (E'

B
− 	0.292702xA + ?E(

?A
− 	0.0215272	x@ +⋯   

                                                                                                        (36) 

3.2.1 𝛼 – Parametrized Differential transform of example 02: 
 

After applying 𝛼 − 𝑃𝐷𝑇M on equation (30) 

(𝑘 + 1)(𝑘 + 2)𝐷(𝑦, 𝛼; 𝑘 + 2) − 4𝐷(𝑦, 𝛼; 𝑘) = (#

*!
𝑠𝑖𝑛 T*;

(
U                                                         (37)              

  𝐷(𝑦, 𝛼; 𝑘 + 2) = &
(*8&)(*8()

`4𝐷(𝑦, 𝛼; 𝑘) + (#

*!
𝑠𝑖𝑛 T*;

(
Ua                                                      (38) 

Let    𝐷(𝑦, 𝛼; 0) = 𝐴,    𝐷(𝑦, 𝛼; 1) = 𝐵 

Put 𝑘 = 0,1,2,3,4,5,6,7…, we calculate 

𝐷(𝑦, 𝛼; 2) = 2𝐴, 𝐷(𝑦, 𝛼; 3) = (&8(=)
B

 ,	𝐷(𝑦, 𝛼; 4) = (<
B

 ,	𝐷(𝑦, 𝛼; 5) = (=
&A
	 , 𝐷(𝑦, 𝛼; 6) = ?<

?A
	 , 𝐷(𝑦, 𝛼; 7) =

((&8(=)
B&A

,…                                                                                                 (39) 

By definition of 𝛼 – 𝑃𝐷𝑇M 

𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 𝑥0)*4
*+,                                                             (40) 

Where   𝑥0 = 𝛼𝑎 + (1 − 𝛼)𝑏 

We get 

	𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 1 + 𝛼)*4
*+,                                                              (41) 

By applying boundary conditions 

1 = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝛼 − 1)*4
*+,                                                               (42)     

0 = ∑ 𝐷(𝑦, 𝛼; 𝑘)𝑘(𝛼)*:&4
*+,                                                               (43) 
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By utilizing equation (41), (42) and (43) with𝛼 = #
$!

, we get 

𝐴 = 0.343987, 𝐵 = −0.0710565                                                 (44) 

Hence 𝛼 – parametrized series solution is obtained up to N=7 

𝑦0(𝑥) = ∑ 𝐷(𝑦, 𝛼; 𝑘)(𝑥 − 1 + 𝛼)*@
*+,                                                               (45) 

= 0.3439868651034321 − 0.07105651459417159(− &F
(,
+ 𝑥) +

0.6879737302068643(− &F
(,
+ 𝑥)( + 0.28596232360388557(− &F

(,
+ 𝑥)B +

0.2293245767356214(− &F
(,
+ 𝑥)? − 0.009474201945889549(− &F

(,
+ 𝑥)A +

0.030576610231416185(− &F
(,
+ 𝑥)> + 0.005446901401978773(− &F

(,
+ 𝑥)@…                           (46) 

Table for example 02: 

Table 2  
Error obtained for Example 2 using DTM and 𝛼-pDTM with k = 0...7 

X EXACT DTM 𝛂-pDTM 𝛂 = 𝟏/𝟐𝟎 ERORR WITH DTM ERORR WITH	𝛂-pDTM 

0.0 1.000000 1.000000 1.000000 0.000000 0.000000 

0.2 0.630739 0.632884 0.743147 -0.002145 -0.112408 
0.4 0.379327 0.38396 0.565828 -0.004633 -0.186501 

0.6 0.218118 0.225906 0.444417 -0.007788 -0.226299 

0.8 0.129559 0.141077 0.369277 -0.011518 -0.239718 

1.0 0.101993 0.115882 0.342191 -0.013889 -0.240198 

 
Graph for example 02: 

 

 
 

 

 

 

 

 
 

 
 
 

Exact
DTM

DTM
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4. Conclusions  

In this study, we effectively employ the DTM to get numerical solutions for both homogenous 
and non-homogenious ordinary differential equation with boundary and initial condition. The DTM 
has been shown to be a dependable and efficient method for solving systems of ordinary differential 
equations. Rapid convergence of series solutions is obtained by this approach. By include more terms 
in the solution; the accuracy of the final result can be increased. The DTM-obtained series solutions 
may often be expressed in precise closed form. The current approach simplifies all computations and 
eliminates the computing challenges of the other conventional approaches. Using the DTM, a number 
of cases were examined, and the outcomes demonstrated exceptional performance. 
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