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Mathematical modelling provides meaningful insight into infectious disease dynamics. 
Toxoplasmosis is protons parasitic disease caused by Toxoplasma gundi which is 
present in cat’s contamination, uncooked meat, polluted soil, water etc. which is risky 
for the people with weak immune system especially risky for the pregnant women. Due 
to silent nature and persistency, it causes serious public health issues as well as in 
animals. The problems addressed in given study are the comprehensive understanding 
about the dynamics of the disease within animal by interaction with infected 
population and also contaminated environment. The aim of this research is to 
investigate the dynamical behavior the toxoplasmosis disease in a cat population by 
mathematically using the compartmental model. The model is the extension of 
classical SIR framework introducing the compartments vaccinated, susceptible, 
seriously infected, mild infected and environmental contamination. This model uses 
various parameters which biologically reflect many rates like vaccination rate, 
immunity loss rate, oocysts shedding rate etc. By analyzing model mathematically, 
equilibrium points are derived which further introduced the threshold, basic 
reproductive number which tells about the behavior of disease either it will spread, 
persist or die out from population. With the help of analytical methods, stability 
analysis of the model is performed. Additionally, for the reliability of the results the 
different numerical schemes are tested using different initial conditions and step sizes 
for positivity, boundedness and dynamical consistency. Mathematical foundation is 
presented by the given model for comprehend the most influencing factors on the 
toxoplasmosis disease transmission. To check whether there is endemic or pandemic 
case, threshold conditions are identified and impact of each parameter on the system 
dynamics is observed. Detailed conclusions are drawn for the sensitivity analysis. In 
conclusion many results are drawn concerning vaccination as control strategies to 
completely die out the disease from the population. 
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1. Introduction 
 

Toxoplasmosis is a disease which is caused by a protozone parasite, toxoplasma gondii. It affects 
millions of people worldwide [1]. This disease is especially risky for the immunocompromised people 
and pregnant women. This disease has been increased risk of Schizophrenia, depression and 
behavioral changes. Some Researches indicate that infected individuals may take more risks, such as 
reckless driving. This parasite is mostly found in the infected animals and in the contaminated food 
and water. Toxoplasma gondii cysts typically have a diameter of 5–50 µm and it has crescent-shaped. 
In the brain, cysts are usually spherical, but in the heart and skeletal muscles, they are longer. 
Although they can be located in many different parts of the host’s body, the brain, skeletal muscles, 
and heart muscles are where they are most frequently discovered [2]. Toxoplasmosis was firstly 
identified in the animals and then identified in the humans. In 1908, Nicolle and Manceaux made the 
initial discovery of Toxoplasma gondii in Tunisia while researching the gundii (Ctenodactylus gundii), 
a rodent species. In the same year, Splendore independently discovered the parasite in a rabbit in 
Brazil. A newly discovered protozoan species was identified as a result of these findings, and it was 
subsequently given the name Toxoplasma gondii because of its crescent-shaped (or ”toxon” in Greek) 
form. Janku reported the first human case of toxoplasmosis in 1939, involving a newborn in Prague, 
Czech Republic. The baby showed symptoms such as calcium deposits in the brain and an enlarged 
head (hydrocephalus). Doctors found Toxoplasma gondii in the brain during examination, connecting 
the parasite to human congenital illness.  

Toxoplasmosis spreads by consuming of cysts in uncooked meat of cattle, pigs or sheep, coming 
into contact with cat feces, transmission from an infected mother to the unborn child, extremely rare 
by contaminated blood transfusion (and organ transplant) etc. [3]. The majority of toxoplasmosis 
patients with healthy immune systems do not exhibit any symptoms. Flu-like symptoms, swollen 
lymph nodes, and muscle aches and pains are possible for those who are challenged. Toxoplasmosis 
damages the brain, eyes, and other organs [4]. According to WHO, toxoplasmosis is a dangerous 
disease for public health. It is especially harmful for pregnant women and who eat contaminated 
food. This can lead to serious health issues like brain damage, abortion etc. Basically, WHO estimated 
approximately 190,000 cases over the world but most of the cases were report in South America, and 
some Middle Eastern countries [5,6].  

Mathematical modelling plays an essential role in epidemiology. The understanding of infectious 
disease dynamics and control methods depends heavily on mathematical modeling according to 
various research studies [7]. In epidemiology, mathematical modelling not only focus on the 
theoretical but also on the practical and essential tools which are helpful in saving life. Mathematical 
modelling solves the problem in case of infectious disease in systematic ways and to understand the 
dynamics of disease provide the quantitative analysis [8]. It helps in understanding disease dynamics, 
predicting future outbreaks, estimation of control strategies, in policy making, interdisciplinary 
insights and in many others ways which in return are helpful for researchers, public health officials 
and policy makers to control the disease. Without a doubt, the most well-known mathematical model 
for the spread of an infectious disease is the SIR model. The SIR model, created in 1927 by Kermack 
and McKendrick, categorizes a population into three groups: susceptible, infectious, and recovered. 
According to Kermack and McKendrick that model is essential for understanding how infectious 
diseases spread among communities. A useful framework for examining and forecasting how 
diseases spread within populations is provided by compartmental deterministic models, which are 
widely used to model the transmission of infectious diseases. 

Symptoms of epidemic disease model by Cooke incorporated a discrete time delay symbolized by 
βSI and a bilinear incidence rate. The authors developed this model to study the transmission 
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patterns of infections that result from rat and cat populations [9]. The time delay feature indicates 
the amount of time required for infectious organisms to mature inside the vector until they can infect 
human beings [10]. The idea of time delay in epidemic modeling gained important biological 
significance according to past studies. The SIR epidemic model functions as an essential instrument 
to analyze and handle epidemic diseases. Public health professionals require this well-structured 
method to analyze disease transmission because it helps build effective measures which reduce 
epidemic related social harm. The SIR model stands as a vital instrument which epidemiologists and 
public health officials use to predict epidemic progress for developing strategic resource allocation 
and control measure implementations [11] while keeping in mind previous disease experiences.  

In first section, literature and background of disease is discussed. Second section discusses the 
model formulation in which equilibrium points, stability and basic reproduction number are 
described. Numerical schemes Euler, 𝑅𝐾! and NSFD are discussed in section three and section four 
is about impact of parameters on state variables and basic reproductive number. Sections five, six 
and seven are about sensitivity analysis, graphical representation and conclusion respectively. 

 
2. Model Formulation 

 
We will analyze the toxoplasmosis disease mathematically and find the different results using                 

equilibrium points for stability analysis, numerical calculations, and simulations. Here is the research 
article [12] which is written by A. A. AYOADE, T. OYEDEPO, and S. AGUNBIADE. In this paper, the 
authors focus on the population of cats. The authors explain the transmission dynamics between the 
environment and the population of cats and used vaccination and sanitation as control strategies. 
They made the five compartments one for the environment and four for the cat population using the 
SIR frame work. The paper gives the conditions and results for disease-free equilibrium and for the 
endemic case. 

 

      
Fig. 1. Flow chart of model 

 
Here, the model is divided into 5 compartments and these are (S(t)) for susceptible; (V(t)) for 

vaccinated; (I(t)) for seriously infected and (M(t)) for mildly infected. In the vaccinated compartment, 
kϕ shows the number of cats that are temporarily immune, where µ shows natural death, and σ is 
the rate of those cats or oocysts that have lost immunity. In the susceptible compartment (1-ϕk) is 
the recruitment rate. The ω is the rate at which susceptible are moving in the seriously infected 
compartment where µ is the rate of natural death. Here γ is the rate at which seriously infected are 
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moving in mildly infected compartment. ϵ is the rate at which the oocysts move from the seriously 
infected compartment to the environment. 

 
2.1 Mathematical Model 
 
The transmission of toxoplasmosis disease in cat population is given in the ODE(differential) form is:  
!"
!#
		=  𝜑𝑘 − (𝜎 + 𝜇)𝑉																																																									(1)                                                

!$
!#

=   (1 − 𝜑)𝑘 + 𝜎𝑉 − 𝜔𝐸𝑆 − 𝜇𝑆																																		(2)                                                                           
!%
!#

   =  𝜔𝐸𝑆 − (𝛾 + 𝜇)𝐼																																																							(3)                                                                                              
!&
!#

   =   𝛾𝐼 − 𝜇𝑀																																																																			(4)                                                                                                 
!'
!#

   =  𝜖𝐼 − (𝛿 + 𝜂)𝐸																																																										(5) 
s.t initial conditions are 
 𝑉(0) = 𝑉", 𝑆(0)= 𝑆", 𝐼(0) = 𝐼", 𝑀(0)=𝑀", 𝐸(0))=𝐸" 
 
The assumptions are as follows: 

1. Mildly infected cats do not interfere with the environment. 
2. Cats in the vaccinated compartment do not interact with the contaminated environment. 

 
2.2  Equilibrium Points 
 
Now we find the equilibrium points, so the derivative goes to zero. 
 𝑉 =	 ()

*+,
                                                                            (A) 

𝑆 = 	
(./())+*( !"#$%)

1'+,
																																																													(B) 

𝐼 = 	1'$
2+,

                                                                              (C) 

𝑀 =	 2%
,

                                                                               (D) 

𝐸 =	 3%
4+5

                                                                             (E) 
 
2.3 Disease Free Equilibrium 
 
DFE is case when there is no disease in a population. All population is susceptible and vaccinated. 
჻  𝐼 = 	 3%

4+5
                                                                                                                                                                                                                                                                                

𝐼 :1 −	
𝜔𝜖𝑆

(𝛿 + 𝜂)(𝛾 + 𝜇);
= 0 

Here 𝐼 = 0 is showing that there are no seriously infected cats so it is DFE. 

𝑆6 =	
(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜑𝜎𝑘

(𝜎 + 𝜇)𝜇
 

𝑉6 =	 ()
*+,

  ,  𝐼6 = 0 ,  ჻ 𝐸 =	 3%
4+5

   , 𝐸7 = 0 

𝑊7 = (	𝑆7, 𝑉7, 𝐼7, 𝐸7) = ((./())((*+,)+(*)(*+,),
,	 ()
*+,

, 0, 0) 
 
2.4 Stability Analysis of Equilibrium Points 
 
Consider the following equations and taking partial derivatives with respect to all state variables: 
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𝑓. = 	𝜑𝑘 − (𝜎 + 𝜇)𝑉                   ,                            𝑓8 =	 (1 − 𝜑)𝑘 + 𝜎𝑉 − 𝜔𝐸𝑆 − 𝜇𝑆                                                                           
𝑓9 = 	𝜔𝐸𝑆 − (𝛾 + 𝜇)𝐼                  ,                            𝑓: = 	𝜖𝐼 − (𝛿 + 𝜂)𝐸 
;<.	
;>

= −(𝜎 + 𝜇),  ;<.	
;?

 = ;<.	
;@
= ;<.

;A
= 0 

;<8	
;>

= 	𝜎,  ;<8	
;?

= −𝜇 − 𝜔𝐸 , 	;<8	
;@

= 0,	 ;<8
;A
=	−𝜔𝑆 

;<9	
;>

= 0,  ;<9	
;?

= 𝜔𝐸, 	;<9	
;@

= −(𝛾 + 𝜇),	 ;<9
;A
= 	𝜔𝑆 

 ;<:	
;>

= 0,  ;<:	
;?

 = 0, ;<:	
;@
= 	ϵ	, ;<:

;A
= −(𝛿 + 𝜂) 

So, Jacobian matrix becomes: 

 𝐽 = B

−(𝜎 + 𝜇) 0 0 0
σ −𝜇 − 𝜔𝐸 0 −𝜔𝑆
0 ωE −(𝛾 + 𝜇) 𝜔𝑆
0 0 𝜖 −(𝛿 + 𝜂)

F 

 

2.5 Stability for Disease Free Equilibrium 
 
Given:   
𝑆 = 𝑆6,  𝑉 = 𝑉6,  𝐼 = 0,  𝐸 = 𝐸6 
𝜆.	 = −(𝜎 + 𝜇) < 0  ,  𝜆8 = −𝜇 < 0 

 𝜆9 = I−(𝛾 + 𝜇) 𝜔𝑆𝑂

𝝐 −(𝛿 + 𝜂)
J 

Trace =	−(𝛾 + 𝜇 + 𝛿 + 𝜂) < 0    ,    D = (𝛾 + 𝜇)(𝛿 + 𝜂) − 𝜔𝜖𝑆7 
(𝛾 + 𝜇)(𝛿 + 𝜂) > 𝜔𝜖𝑆7  ,  1 > 13$&

(2+,)(4+5)
 

𝑅B =	
𝜔𝜖𝑆7

(𝛾 + 𝜇)(𝛿 + 𝜂)
 

𝑅B =	
𝜔𝜖[(𝜇 + 𝛾)(1 − 𝜑)𝑘 + 𝜎𝜑𝑘
𝜇(𝜇 + 𝜎)(𝛾 + 𝜇)(𝛿 + 𝜂)

 

𝑅B < 1 
 
That was the stability analysis of the DFE. Therefore ,DFE is locally asymptotically stable if 𝑅B < 1. 
 
2.6 Endemic Equilibrium Points 
 

𝐼 =
𝜔𝐸𝑆
𝛾 + 𝜇																																																														(𝐹) 

𝐸 = 	 $%
&'(

  ,  𝑆 = 	
(./())+#!"#$%

1'+,
 

Putting value of E in S: 

𝑆 = 	
(1 − 𝜑)𝑘 + 𝜎𝜑𝑘

𝜎 + 𝜇

𝜔 𝜖𝐼
𝛿 + 𝜇 + 𝜇

																																													(𝐺) 

𝐼∗ =	
𝜔𝜖(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜔𝜖(𝜎𝜑𝑘) − 𝜇(𝛿 + 𝜂)(𝛾 + 𝜇)(𝜎 + 𝜇)

𝜔𝜖(𝜎 + 𝜇)(𝛾 + 𝜇)
 

𝑆∗ =	
[(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜎𝜑𝑘](𝛾 + 𝜇)(𝛿 + 𝜂)

𝜔𝜖(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜔𝜖𝜑𝑘  

჻𝐸 = 	
𝜖𝐼

𝛿 + 𝜂 
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𝐸∗ =	
𝜖[𝜖𝜔(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜔𝜖(𝜎𝜑𝑘) − 𝜇(𝛿 + 𝜂)(𝛾 + 𝜇)(𝜎 + 𝜇)

𝜔𝜖(𝜎 + 𝜇)(𝛾 + 𝜇)(𝛿 + 𝜂)
 

𝑉∗ =	
𝜑𝑘

(𝜎 + 𝜇) 

𝑊∗ = (𝑉∗, 𝑆∗, 𝐼∗, 𝐸∗) 
 
2.7 Stability of Endemic Equilibrium 
 
Here we will check the stability of endemic equilibrium points by using Jacobian matrix. 

𝐽 = B

−(𝜎 + 𝜇) 0 0 0
σ −𝜇 − 𝜔𝐸∗ 0 −𝜔𝑆∗
0 ω𝐸∗ −(𝛾 + 𝜇) 𝜔𝑆∗
0 0 𝜖 −(𝛿 + 𝜂)

F 

 
𝑇𝑟𝑎𝑐𝑒 = 	−[4𝜇 + 𝜎 + 𝛾 + 𝛿 + 𝜔𝐸∗] < 0 
For determinant we have to use the cofactor expansion method. 

𝑀.. = V
−𝜇−𝜔𝐸∗ 0 −𝜔𝑆∗

𝜔𝐸∗ −(𝛾 + 𝜇) 𝜔𝑆∗

0 𝜖 −(𝛿 + 𝜇)
W 

det(𝐽) = 	−(𝜎 + 𝜇) ∗ 𝑑𝑒𝑡(𝑀..) 
det(𝐽) = 	−(𝜎 + 𝜇) ∗ [[(−𝜇 − 𝜔𝐸∗)[(𝛾 + 𝜇)(𝛿 + 𝜂) − 𝜔𝜖𝑆∗] − 𝜔8𝜖𝑆∗𝐸∗8]] 
−(𝜎 + 𝜇) ∗ [[(−𝜇 − 𝜔𝐸∗)[(𝛾 + 𝜇)(𝛿 + 𝜂) − 𝜔𝜖𝑆∗] − 𝜔8𝜖𝑆∗𝐸∗8]] > 0 

(𝛾 + 𝜇)(𝛿 + 𝜂) − 	𝜔𝜖𝑆∗ −	
𝜔8𝜖𝑆∗𝐸∗8

(−𝜇 − 𝜔𝐸∗)
	> 0																															(𝐻) 

 ჻𝑆∗ = $&

D'
 

   𝑅B8 > 𝑅B  
𝑅B =	

13$&

(2+,)(4+5)
	  ,   𝑅B > 1 

 
Hence we proved that basic reproductive number is greater than one which is showing that                                            
Endemic Equilibrium is locally stable. 
 
2.8 Basic Reproductive Number 
 

Now we are finding basic reproductive number 𝑅* which is the average number of infection 
caused by individual. We are taking seriously infected (I) and environment (E) compartments because 
these compartments are responsible for the transmission of infection. So 
!%
!#

   =  𝜔𝐸𝑆 − (𝛾 + 𝜇)𝐼 
!'
!#

   =  𝜖𝐼 − (𝛿 + 𝜂)𝐸 

B

𝑑𝐼
𝑑𝑡	

𝑑𝐸
𝑑𝑡

F = _𝜔𝐸𝑆
7

𝜖𝐼 ` − a
(𝛾 + 𝜇)𝐼
(𝛿 + 𝜂)𝐸b 

𝐹∗ = _𝜔𝐸𝑆
7

𝜖𝐼 ` = a
𝐹.∗
𝐹8∗
b 

 𝑇∗ = a
(𝛾 + 𝜇)𝐼
(𝛿 + 𝜂)𝐸b = a

𝑇.∗
𝑇8∗
b 

Taking partial derivative: 
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 𝐹∗ = _0 𝜔𝑆7
𝜖 0 ` 

 

𝑇∗ = a𝛾 + 𝜇 0
0 𝛿 + 𝜂b 

The next generation method is given as: 
𝐿 = 		𝐹∗ ∗ 𝑇∗/ 

𝐿 =

⎣
⎢
⎢
⎢
⎡ 0

𝜔𝑆6

𝛿 + 𝜂
𝜖𝐼

𝛾 + 𝜇 0 ⎦
⎥
⎥
⎥
⎤
 

 𝑑𝑒𝑡 kV
0 1$(

4+5
3%
2+,

0
W − 𝜆 _1 0

0 1`l = 0 

 𝜆 = ±n 1'$(

(2+,)(4+5)
 

𝑅E	 = 		max	 |	𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠(𝐹∗ ∗ 𝑇∗/) | =			n 1'$(

(2+,)(4+5)
 

჻𝑆6 =	
(1 − 𝜑)𝑘(𝜎 + 𝜇) + 𝜑𝜎𝑘

(𝜎 + 𝜇)𝜇
 

𝑅B =	
𝜔𝜖[(𝜇 + 𝜎)(1 − 𝜑)𝑘 + 𝜎𝜑𝑘]
𝜇(𝜇 + 𝜎)(𝛾 + 𝜇)(𝛿 + 𝜂)

 

 
2.9 Examples 

 
Here is the graphical representation of above calculated study state solutions of the model. 

Example1: For 𝜔 = 0.011, 𝜖 = 0.045, 𝜇 = 0.003, 𝜎 = 0.02, 𝜑 = 0.08, 𝑘 = 1.5, 𝛾 = 0.8, 𝛿 =
0.07, 𝜂 = 0.3,	then (𝑅* = 0.8 < 1), hence the T. gondii-free equilibrium(𝑊") is locally asymptotically 
stable where initial conditions are 𝑉(0) = 200, 𝑆(0) = 500, 𝐼(0) = 55,𝑀(0) = 150, 𝐸(0) = 250. 
Example 2: For 𝜔 = 0.019, 𝜖 = 0.055, 𝜇 = 0.003, 𝜎 = 0.02, 𝜑 = 0.079, 𝐾 = 1.5, 𝛾 = 𝛿 =
0.07, 𝜂 = 0.29 then (𝑅* = 1.8 > 1), hence the T. gondii-endemic equilibrium (𝑊∗) is locally stable 
where initial conditions are 𝑉(0) = 200, 𝑆(0) = 600, 𝐼(0) = 15,𝑀(0) = 150, 𝐸(0) = 400. Results 
are shown in figures (2,3). 
 
3. Numerical Analysis 

 
In previous sections we calculated the equilibrium points and check their stability. We checked 

the behavior of 𝑅* by simulation by using built in function in Matlab. Sometimes when we change 
the initial conditions or change the parameters then the given built in tools give the false results in 
form of unboundedness or divergence or in other ways. In this case we need numerical techniques 
for reliable results. After finding the study state solutions and plotting their results, this chapter will 
give us the numerical analysis of toxoplasma transmission and effect of each parameters which we 
have used, on state variables and basic reproductive number 𝑅*. This will give us which parameter is 
more sensitive in spreading the disease. As some techniques or tools are not reliable for nonlinear 
model because these model have some assumptions like sum of all population should be positive, 
population should be bounded and dynamical system should be consistence. Also non-linear models 
do not give exact solutions always. In this case we need numerical technique in which we see the 
behavior of system numerically. Researchers have made many numerical techniques like Euler, Non 
Standard Finite Difference (NSFD), RK4, Back Difference Formulae (BDF), Implicit-Explicit (IMEX), 
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Stochastic Simulation Algorithms etc. [13]. For our numerical calculations we will use the three 
schemes which will be Euler, RK4 and NSFD. Using these techniques, we will plot the all our required 
graphs which will tell us the specific information about disease behavior viewing each state variables 
and each parameter. 
 
3.1 Euler Scheme 
 

Leonhard Euler was the first mathematician who developed the Euler Scheme between the era 
of 1768 to 1770. Basically this scheme was developed for solving ordinary differential equations. In 
case of disease dynamics, this is the fundamental and simplest numerical scheme which tells us about 
spread of diseases and their interaction with population [14]. In numerical method we make the 
iterative system and chose the step sizes. Euler scheme shows us negative results when we increase 
the step sizes and it is biologically unrealistic. It has stability and accuracy problems. This shows that 
this scheme is not reliable for numerical method. The model of this project is given as: 
 
Conversion of Model Using Euler Method        
	𝑉F+. = ℎ[𝜑𝑘 − (𝜎 + 𝜇)𝑉F] + 𝑉F							,    	𝑆F+. = ℎ[(1 − 𝜑)𝑘 + 𝜎𝑉F −𝜔𝐸F − 𝜇𝑆F] + 𝑆F 
	𝐼F+. = ℎ[𝜔𝐸F𝑆F − (𝛾 + 𝜇)𝐼F] + 𝐼F   , 				𝑀F+. = ℎ[𝛾𝐼F − 𝜇𝑀F] + 𝑀F 
	𝐸F+. = ℎ[𝜖𝐼F − (𝛿 + 𝜂)𝐸F] + 𝐸F	
Results are illustrated in figures (4,5). 
	
3.2 Runge-Kutta 𝑅𝐾! Method 

 
After successfully observing results from Euler which is numerical techniques, we move towards 

the other numerical technique which is Runge-Kutta 𝑅𝐾!. Thisfourth-order method was developed 
by the Germanmathematicians Carl Runge and Wilhelm Kutta about 1900. This technique was 
developed to approximate solutions to ordinary differential equations and are family of iterative 
techniques [15]. Given method is the extension of Euler method and initially introduced by Carl Runge 
in 1895. In this section we will see all the results using 𝑅𝐾!	technique and will compare with all the 
results from previous technique and will see that which technique is more reliable and authentic for 
given mathematical model. We have seen from the results (6,7) that at some specific step sizes RK4 
scheme is convergent otherwise divergent. So, we can say that it is conditionally convergent which 
behaves like Euler. 
 
3.3 NSFD Scheme 
 

The advance scheme NSFD, which was firstly designed by Ronald E.Mickens in the last decade of 
20th century, is the best technique which gives the result in better way no matter what are the step 
sizes. It maintains the boundedness of solution and also maintain the positivity of population at any 
step size. Also, the model remains consistence and is conditionally convergent. Due to having these 
properties this scheme is superior on Euler scheme and others [16]. 
 
Conversion of Model Using NSFD Method 
 
We convert our differential equations of given model into NSFD using the numerical method NSFD. 
	𝑉𝒏'𝟏 = -𝒏'./0

1'.(3'4)
					,							𝑆F+. = $)+H(./())+H(")

.+H1')+H,
	



Warisan Journal of Mathematical Sciences and Engineering 
Volume 2, Issue 1 (2025) 11-25 

19 
 

		𝐼F+. = %)+H1')$)

.+H(2+,)
					,						𝑀F+. = &)+H2%)

.+H,
					,						𝐸F+. = ')+H3%)

.+H(4+5)
	

 
Results are shown in figures (8,9). 
	
3.4 Comparison between Euler, 𝑅𝐾!  & NSFD 
 

Here are the comparisons between Euler, 𝑅𝐾! and NSFD schemes presented through individual 
graphs for a specific step size. These comparisons highlight the qualitative behaviour of each 
numerical scheme in modelling the dynamics of the population. In particular, one method preserves 
the positivity of the population over time (a biologically essential property), while the other fails to 
do so, resulting in negative values which are unrealistic in epidemiological modelling.  𝑅𝐾! and Euler 
have the same behaviour as both schemes are conditional convergent. At small steps these show 
convergence but when we increase the step size a bit these become divergent and show 
unboundedness. This significant contrast emphasizes the superiority of the positivity-preserving 
method. The outcomes of these comparisons are illustrated in Figures, showcasing how each 
compartment such as vaccinated, susceptible, infected, and environmental is influenced under three 
schemes. Results are shown in figures (10,13). 
 
4. Impact of Parameters on State Variables  
 

We used different parameters for different four step sizes in our model which represent different 
scenarios according to state variables. In these graphs (14,17) we have seen the parameters which 
have greater impact on given five state variables. We can see that by increasing step size some results 
are increasing and some decreasing. 
 
4.1 Impact of phi on 𝑅* 
 

The basic motive of our model is to keep the value of basic reproductive number 𝑅* < 1 so that 
our infected population becomes minimum or becomes zero. This will happen by adjusting the values 
of parameters. Here we see the impact of phi on  𝑅* < 1	which show that when we increase the 
value of phi our  𝑅* < 1 decrease and eventually approaches to zero which will show that disease 
will completely die out from population shown in figure (18). 
 
5. Sensitivity Analysis of 𝑹𝒛 
 

Basic Reproductive Number plays an important role in infectious diseases, telling us that either 
the disease will die completely, persist, or spread in the population depends on its values (Nakul 
Chitnis, 22 February 2008). Here we will check the impact of each parameter on the 𝑅* and will see 
that which parameter is more sensitive to 𝑅* . All the parameters and their values are given as For 
𝜔 = 0.019, 𝜖 = 0.055, 𝜇 = 0.003, 𝜎 = 0.02, 𝜑 = 0.079, 𝐾 = 1.5, 𝛾 = 𝛿 = 0.07, 𝜂 = 0.29 then (𝑅B = 1.8 >
1). 
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Symbols Formulas Parameters Description's Sensitive Index 

𝜇 𝐴"
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜇 ∗

𝜇
𝑅𝒛

 

 

Natural death rate ≈ −1.01 

k 𝐴%
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝑘 ∗

𝑘
𝑅𝒛

 

 

Recruitment rate by birth and immigration = 1 

𝜔 
 

 
𝜑 

 
𝛾 

 
𝜎 

 
𝜖 

 
𝛿 

 

𝐴𝝎
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜔 ∗

𝜔
𝑅𝒛

 

𝐴'
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜑 ∗

𝜑
𝑅𝒛

 

𝐴(
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝛾 ∗

𝛾
𝑅𝒛

 

𝐴)
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜎 ∗

𝜎
𝑅𝒛

 

𝐴𝝐
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜖 ∗

𝜖
𝑅𝒛

 

𝐴+
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝛿 ∗

𝛿
𝑅𝒛

 

Effective contact rate 
 

Fraction of cats vaccinated at birth 
 
 

Termination rate of shedding of oocysts 
 

Loss rate of immunity 
 

Shedding rate of oocysts 
 

Removal rate of oocysts (non-sanitation) 

= 1 
 

≈ −0.0104 
 
 

≈ −0.995 
 

≈ 0.0076 
 

= 1 
 

≈ −0.194 

𝜂 𝐴,
𝑹𝒛 =

𝜕𝑅𝒛
𝜕𝜂 ∗

𝜂
𝑅𝒛

 

 

Removal rate of oocysts (due to sanitation) ≈ −0.805 

 
From the above study we observe that the basic reproduction number 𝑅* is very sensitive to 

changes in Recruitment rate by birth and immigration k, Effective contact rate ω and Shedding rate 
of oocysts ϵ. If these increase 𝑅* will also increase in the same way and if these decrease 𝑅* will also 
decrease because 𝑅* and these are directly proportional to 𝑅*. All the other param eters are inversely 
proportional to 𝑅*. We can say that our basic reproductive number is more sensitive to ω and σ as if 
we decrease, the contact rate of our 𝑅* decreases and we can approach disease free equilibrium 
case. The same happens by decreasing the shedding rate of oocysts 𝑅* to less than zero. It is clear 
from the results that when infected cats decrease the shedding oocysts in the environment, then 
automatically the environment becomes less contaminated. Same, the rate of contact form 
susceptible to infected cats and contaminated environment de creases. Thus, these two parameters 
are more effective in controlling the disease. 
 
6. Graphical Representation 
 

 

Fig. 2 and Fig. 3. Results from ODE-45 
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Fig. 4 and Fig. 5. Results using Euler Scheme 

 

Fig. 6 and Fig. 7. Results using 𝑅𝐾: scheme 
 

 

Fig. 8 and Fig. 9. Results using NSFD scheme 
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Fig. 10 and Fig. 11. Results from comparisons 
 

 

Fig. 12 and Fig. 13. Results from comparisons 

 

Fig. 14 and Fig. 15. Impact of parameters on S.V 
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Fig. 16 and Fig. 17. Impact of parameters on S.V 

 

Fig. 8. Impact of 𝜑 on 𝑅B 
 

7. Conclusion 
 
In recent years, the world has witnessed the devastating impacts of infectious diseases, both 

pandemic (like COVID-19) and endemic (such as malaria and HIV). These diseases not only challenge 
public health systems but also affect global economies and social structures. Introducing  
”Vaccination” in our model, we examine how these this effect the proportion of T. gondii in cat 
population. We deeply analyze the model to validate our model and calculate the basic reproductive 
number 𝑅* which tells us about disease. We examined the conditions to exist the global stability for 
disease free equilibrium and also for endemic equilibrium by calculating the threshold quantity 𝑅*. 
The result shows the effective contact rate ω, shedding rate of oocyts ϵ, recruitment rate of cats k, 
removal rate of oocyts due to sanitation η and vaccination rate ϕ as most sensitive parameters to 𝑅*. 
We performed simulations based on theoretical results to analyze the effect of these parameters on 
spread and managing T.gondii. After successfully calculating the results from study state solution of 
the model, we checked the numerical techniques (Euler, RK4 & NSFD) from which we saw all the 
results of Euler, RK4 and NSFD schemes. We saw that for long-term behavior of disease, Euler and 
RK4 schemes have shown negative results and are inconsistent dynamically from which we say that 
these are not reliable schemes. On the other hand, we also plotted the results of NSFD scheme, from 
which we saw that no matter what the step size is, this scheme gives the reliable results and keeps 
the population positive. From given experiment NSFD scheme is a reliable tool from which we can 
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check our long-term behavior of disease. We checked the impact of parameters on each state 
variable from which we saw that which parameter is more effecting the specific variables. Basic 
Reproductive Number 𝑅* which plays a crucial role in this model for elimination of disease which 
depends on its value by using the parameters. ϕ is the vaccination rate in cat population and from 
the results, we have seen that it has a great impact on 𝑅*. By increasing its value, 𝑅* decreased, on 
the other hand infected population also decreased. It was the basic motive of our project that by 
increasing the vaccination rate in the population, we can control the disease. At the last, we saw the 
sensitivity of parameters on the 𝑅* which showed that contact rate and shedding rate of oocysts are 
more sensitive to 𝑅*. Their increment or decrement have the direct impact on the 𝑅*. The results say 
that safe environment form oocysts is the best control strategy which can help in controlling the 
disease and may be helpful for the healthcare centers in the world. 
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