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to silent nature and persistency, it causes serious public health issues as well as in
animals. The problems addressed in given study are the comprehensive understanding
about the dynamics of the disease within animal by interaction with infected
population and also contaminated environment. The aim of this research is to
investigate the dynamical behavior the toxoplasmosis disease in a cat population by
mathematically using the compartmental model. The model is the extension of
classical SIR framework introducing the compartments vaccinated, susceptible,
seriously infected, mild infected and environmental contamination. This model uses
various parameters which biologically reflect many rates like vaccination rate,
immunity loss rate, oocysts shedding rate etc. By analyzing model mathematically,
equilibrium points are derived which further introduced the threshold, basic
reproductive number which tells about the behavior of disease either it will spread,
persist or die out from population. With the help of analytical methods, stability
analysis of the model is performed. Additionally, for the reliability of the results the
different numerical schemes are tested using different initial conditions and step sizes
for positivity, boundedness and dynamical consistency. Mathematical foundation is
presented by the given model for comprehend the most influencing factors on the
toxoplasmosis disease transmission. To check whether there is endemic or pandemic
case, threshold conditions are identified and impact of each parameter on the system
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1. Introduction

Toxoplasmosis is a disease which is caused by a protozone parasite, toxoplasma gondii. It affects
millions of people worldwide [1]. This disease is especially risky for the immunocompromised people
and pregnant women. This disease has been increased risk of Schizophrenia, depression and
behavioral changes. Some Researches indicate that infected individuals may take more risks, such as
reckless driving. This parasite is mostly found in the infected animals and in the contaminated food
and water. Toxoplasma gondii cysts typically have a diameter of 5-50 um and it has crescent-shaped.
In the brain, cysts are usually spherical, but in the heart and skeletal muscles, they are longer.
Although they can be located in many different parts of the host’s body, the brain, skeletal muscles,
and heart muscles are where they are most frequently discovered [2]. Toxoplasmosis was firstly
identified in the animals and then identified in the humans. In 1908, Nicolle and Manceaux made the
initial discovery of Toxoplasma gondii in Tunisia while researching the gundii (Ctenodactylus gundii),
a rodent species. In the same year, Splendore independently discovered the parasite in a rabbit in
Brazil. A newly discovered protozoan species was identified as a result of these findings, and it was
subsequently given the name Toxoplasma gondii because of its crescent-shaped (or “toxon” in Greek)
form. Janku reported the first human case of toxoplasmosis in 1939, involving a newborn in Prague,
Czech Republic. The baby showed symptoms such as calcium deposits in the brain and an enlarged
head (hydrocephalus). Doctors found Toxoplasma gondii in the brain during examination, connecting
the parasite to human congenital illness.

Toxoplasmosis spreads by consuming of cysts in uncooked meat of cattle, pigs or sheep, coming
into contact with cat feces, transmission from an infected mother to the unborn child, extremely rare
by contaminated blood transfusion (and organ transplant) etc. [3]. The majority of toxoplasmosis
patients with healthy immune systems do not exhibit any symptoms. Flu-like symptoms, swollen
lymph nodes, and muscle aches and pains are possible for those who are challenged. Toxoplasmosis
damages the brain, eyes, and other organs [4]. According to WHO, toxoplasmosis is a dangerous
disease for public health. It is especially harmful for pregnant women and who eat contaminated
food. This can lead to serious health issues like brain damage, abortion etc. Basically, WHO estimated
approximately 190,000 cases over the world but most of the cases were report in South America, and
some Middle Eastern countries [5,6].

Mathematical modelling plays an essential role in epidemiology. The understanding of infectious
disease dynamics and control methods depends heavily on mathematical modeling according to
various research studies [7]. In epidemiology, mathematical modelling not only focus on the
theoretical but also on the practical and essential tools which are helpful in saving life. Mathematical
modelling solves the problem in case of infectious disease in systematic ways and to understand the
dynamics of disease provide the quantitative analysis [8]. It helps in understanding disease dynamics,
predicting future outbreaks, estimation of control strategies, in policy making, interdisciplinary
insights and in many others ways which in return are helpful for researchers, public health officials
and policy makers to control the disease. Without a doubt, the most well-known mathematical model
for the spread of an infectious disease is the SIR model. The SIR model, created in 1927 by Kermack
and McKendrick, categorizes a population into three groups: susceptible, infectious, and recovered.
According to Kermack and McKendrick that model is essential for understanding how infectious
diseases spread among communities. A useful framework for examining and forecasting how
diseases spread within populations is provided by compartmental deterministic models, which are
widely used to model the transmission of infectious diseases.

Symptoms of epidemic disease model by Cooke incorporated a discrete time delay symbolized by
BSI and a bilinear incidence rate. The authors developed this model to study the transmission
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patterns of infections that result from rat and cat populations [9]. The time delay feature indicates
the amount of time required for infectious organisms to mature inside the vector until they can infect
human beings [10]. The idea of time delay in epidemic modeling gained important biological
significance according to past studies. The SIR epidemic model functions as an essential instrument
to analyze and handle epidemic diseases. Public health professionals require this well-structured
method to analyze disease transmission because it helps build effective measures which reduce
epidemic related social harm. The SIR model stands as a vital instrument which epidemiologists and
public health officials use to predict epidemic progress for developing strategic resource allocation
and control measure implementations [11] while keeping in mind previous disease experiences.

In first section, literature and background of disease is discussed. Second section discusses the
model formulation in which equilibrium points, stability and basic reproduction number are
described. Numerical schemes Euler, RK, and NSFD are discussed in section three and section four
is about impact of parameters on state variables and basic reproductive number. Sections five, six
and seven are about sensitivity analysis, graphical representation and conclusion respectively.

2. Model Formulation

We will analyze the toxoplasmosis disease mathematically and find the different results using
equilibrium points for stability analysis, numerical calculations, and simulations. Here is the research
article [12] which is written by A. A. AYOADE, T. OYEDEPO, and S. AGUNBIADE. In this paper, the
authors focus on the population of cats. The authors explain the transmission dynamics between the
environment and the population of cats and used vaccination and sanitation as control strategies.
They made the five compartments one for the environment and four for the cat population using the
SIR frame work. The paper gives the conditions and results for disease-free equilibrium and for the
endemic case.

oV us ul
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pv & +m)

Fig. 1. Flow chart of model

Here, the model is divided into 5 compartments and these are (S(t)) for susceptible; (V(t)) for
vaccinated; (I(t)) for seriously infected and (M(t)) for mildly infected. In the vaccinated compartment,
ke shows the number of cats that are temporarily immune, where p shows natural death, and o is
the rate of those cats or oocysts that have lost immunity. In the susceptible compartment (1-@k) is
the recruitment rate. The w is the rate at which susceptible are moving in the seriously infected
compartment where W is the rate of natural death. Here y is the rate at which seriously infected are
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moving in mildly infected compartment. € is the rate at which the oocysts move from the seriously

infected compartment to the environment.

2.1 Mathematical Model

The transmission of toxoplasmosis disease in cat population is given in the ODE(differential) form is:

av

Echk—(a+u)V 1)
%: (1—-@)k + oV —wES —puS (2)
% = wES — (y + wI (3)
dm

Z—f =el— (6 +n)E (5)

s.t initial conditions are
V(0) =1, $(0)=S,,1(0) =1,, M(0)=M,, E(0))=E,

The assumptions are as follows:
1. Mildly infected cats do not interfere with the environment.
2. Cats in the vaccinated compartment do not interact with the contaminated environment.

2.2 Equilibrium Points

Now we find the equilibrium points, so the derivative goes to zero.

V=2 (A)

. (1-@)k+a(ED) @)
WE+u

=22 (©

M="r (D)

E=3 - (E)

2.3 Disease Free Equilibrium

DFE is case when there is no disease in a population. All population is susceptible and vaccinated.

€l
5+n

I (1 weS ) _0

E+mly+w))
Here I = 0 is showing that there are no seriously infected cats so it is DFE.
B (1 —@)k(o + 1) + pok

SO =
(0 +wu
po=2% j0o-q E="L Eo=0
o+p ’ r S+n '
W, = (89,0, 1°, %) = ((-2Xeeiteck o 4 )

(o+wu o+u’

2.4 Stability Analysis of Equilibrium Points

Consider the following equations and taking partial derivatives with respect to all state variables:
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So, Jacobian matrix becomes:

—(o+ ) 0 0 0

_ o —u—wkE 0 —wS

J= 0 wE -(ry+uw wS
0 0 € —(6+1n)

2.5 Stability for Disease Free Equilibrium

Given:
§=8%,v=v91=0,E=E°
M =—@+w<0,,=—u<o0
PI (2 D BT
€ —(6+n)
Trace= —(y+u+6+n)<0 , D=+ w(d+n)— weS’

0 weS°
+w@6+n)>wes®, 1> REIET)
weS°

(y+w+n)
_ wel(u+y)A - @)k +apk

pu+ o)y + w6 +n)

Z=

R, <1

That was the stability analysis of the DFE. Therefore ,DFE is locally asymptotically stable if R, < 1.

2.6 Endemic Equilibrium Points

[ = wES )
Yytu
Py -2
§+n ’ - WE+u
Putting value of E in S:
opk
(1-p)k+ T4
S= ()
el n
TN
= we(l-¢)k(o-ku)4-w6(0¢k)-u(6-+n)0/+t0(0-ku)
we(o + W)y + )
S*::[(1-¢)k(0-+u)*-ka]0/+10(6-kn)
we(1l — @)k(o + p) + wepk
el
+E =
6+n
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elew(1 — @)k(o + ) + we(opk) — u(s +n)(y + 1) (o + 1)

E* =
we(o+ Wy + W@ +n)
ok
V=
(o +u)
W, = V*S*I"E")

2.7 Stability of Endemic Equilibrium

Here we will check the stability of endemic equilibrium points by using Jacobian matrix.

—(o+uw 0 0 0
_ o —u— wE” 0 —wS*
/= 0 wE* —(y+uw wS*
0 0 € -6 +n)

Trace = —[4u+o+y+6+wE*] <0
For determinant we have to use the cofactor expansion method.

—u— wE” 0 —wS”
My, =| wE” —(y+uw wS”
0 € -6+

det(J) = —(o + u) * det(M;,)
det()) = —(o + ) * [(—p — WED)[(y + 1)(§ + 1) — weS™] — w*eS*E*?]]
—(o+ ) *[[(—p — wED)[(y + )8 + 1) — weS*] — w?eS*E**]] > 0

4+ W +1) — weS® WeSTET (H)
Y +u 0 n Ty
:-S*=S—
Ry
RZ >R,
weS°
R = GG+ R

Hence we proved that basic reproductive number is greater than one which is showing that
Endemic Equilibrium is locally stable.

2.8 Basic Reproductive Number

Now we are finding basic reproductive number R, which is the average number of infection
caused by individual. We are taking seriously infected (1) and environment (E) compartments because

these compartments are responsible for the transmission of infection. So
dl

i wES — (y + wl
dE
e el — (6 +n)E
dl
dt =[a)ES"]_ (V+u)1]
d_E el (6 +n)E
dt v
. _ [wES°] _ [F{
F _[ el ]_ FZ*]
T = (V+H)1]: Tf]
(6 +n)E Ty

Taking partial derivative:
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The next generation method is given as:
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0 wS°
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0
Yy tu
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2.9 Examples

Here is the graphical representation of above calculated study state solutions of the model.
Examplel: For w = 0.011,¢ = 0.045,4 = 0.003,0 = 0.02,¢p = 0.08,k = 1.5,y = 0.8,6 =
0.07,n = 0.3,then (R, = 0.8 < 1), hence the T. gondii-free equilibrium(W,) is locally asymptotically
stable where initial conditions are V' (0) = 200,5(0) = 500, 1(0) = 55,M(0) = 150, E(0) = 250.
Example 2: For w =0.019, € =0.055,4=0.003,0 =0.02,¢0 =0.079,K =15,y =6 =
0.07,n = 0.29 then (R, = 1.8 > 1), hence the T. gondii-endemic equilibrium (W) is locally stable
where initial conditions are V(0) = 200,5(0) = 600,1(0) = 15,M(0) = 150, E(0) = 400. Results
are shown in figures (2,3).

3. Numerical Analysis

In previous sections we calculated the equilibrium points and check their stability. We checked
the behavior of R, by simulation by using built in function in Matlab. Sometimes when we change
the initial conditions or change the parameters then the given built in tools give the false results in
form of unboundedness or divergence or in other ways. In this case we need numerical techniques
for reliable results. After finding the study state solutions and plotting their results, this chapter will
give us the numerical analysis of toxoplasma transmission and effect of each parameters which we
have used, on state variables and basic reproductive number R,. This will give us which parameter is
more sensitive in spreading the disease. As some techniques or tools are not reliable for nonlinear
model because these model have some assumptions like sum of all population should be positive,
population should be bounded and dynamical system should be consistence. Also non-linear models
do not give exact solutions always. In this case we need numerical technique in which we see the
behavior of system numerically. Researchers have made many numerical techniques like Euler, Non
Standard Finite Difference (NSFD), RK4, Back Difference Formulae (BDF), Implicit-Explicit (IMEX),
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Stochastic Simulation Algorithms etc. [13]. For our numerical calculations we will use the three
schemes which will be Euler, RK4 and NSFD. Using these techniques, we will plot the all our required
graphs which will tell us the specific information about disease behavior viewing each state variables
and each parameter.

3.1 Euler Scheme

Leonhard Euler was the first mathematician who developed the Euler Scheme between the era
of 1768 to 1770. Basically this scheme was developed for solving ordinary differential equations. In
case of disease dynamics, this is the fundamental and simplest numerical scheme which tells us about
spread of diseases and their interaction with population [14]. In numerical method we make the
iterative system and chose the step sizes. Euler scheme shows us negative results when we increase
the step sizes and it is biologically unrealistic. It has stability and accuracy problems. This shows that
this scheme is not reliable for numerical method. The model of this project is given as:

Conversion of Model Using Euler Method

V" = hlpk — (o + V] + V™, S =h[(1 - @)k +oV™ — wE™ — uS™ + s™
"1 = h[wE™S™ — (y + I + I, M™1 = h[yI" — uM"] + M"

E™! = hlel™ — (6 + n)E™] + E™

Results are illustrated in figures (4,5).

3.2 Runge-Kutta RK, Method

After successfully observing results from Euler which is numerical techniques, we move towards
the other numerical technique which is Runge-Kutta RK,. Thisfourth-order method was developed
by the Germanmathematicians Carl Runge and Wilhelm Kutta about 1900. This technique was
developed to approximate solutions to ordinary differential equations and are family of iterative
techniques [15]. Given method is the extension of Euler method and initially introduced by Carl Runge
in 1895. In this section we will see all the results using RK, technique and will compare with all the
results from previous technique and will see that which technique is more reliable and authentic for
given mathematical model. We have seen from the results (6,7) that at some specific step sizes RK4
scheme is convergent otherwise divergent. So, we can say that it is conditionally convergent which
behaves like Euler.

3.3 NSFD Scheme

The advance scheme NSFD, which was firstly designed by Ronald E.Mickens in the last decade of
20th century, is the best technique which gives the result in better way no matter what are the step
sizes. It maintains the boundedness of solution and also maintain the positivity of population at any
step size. Also, the model remains consistence and is conditionally convergent. Due to having these
properties this scheme is superior on Euler scheme and others [16].

Conversion of Model Using NSFD Method

We convert our differential equations of given model into NSFD using the numerical method NSFD.
q
pn+l — Vithek g+l _ STHRO-@lk+hovT
T 1+h(o+p) T 1+hwEM+hu
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[+ — I"+hwE™S™
1+h(y+u)

Mn+1 _ Mn+h.]/1n En+1 _ E™+hel™
’ 1+hu ’ T 1+h(5+1)

Results are shown in figures (8,9).

3.4 Comparison between Euler, RK, & NSFD

Here are the comparisons between Euler, RK, and NSFD schemes presented through individual
graphs for a specific step size. These comparisons highlight the qualitative behaviour of each
numerical scheme in modelling the dynamics of the population. In particular, one method preserves
the positivity of the population over time (a biologically essential property), while the other fails to
do so, resulting in negative values which are unrealistic in epidemiological modelling. RK, and Euler
have the same behaviour as both schemes are conditional convergent. At small steps these show
convergence but when we increase the step size a bit these become divergent and show
unboundedness. This significant contrast emphasizes the superiority of the positivity-preserving
method. The outcomes of these comparisons are illustrated in Figures, showcasing how each
compartment such as vaccinated, susceptible, infected, and environmental is influenced under three
schemes. Results are shown in figures (10,13).

4. Impact of Parameters on State Variables

We used different parameters for different four step sizes in our model which represent different
scenarios according to state variables. In these graphs (14,17) we have seen the parameters which
have greater impact on given five state variables. We can see that by increasing step size some results
are increasing and some decreasing.

4.1 Impact of phion R,

The basic motive of our model is to keep the value of basic reproductive number R, < 1 so that
our infected population becomes minimum or becomes zero. This will happen by adjusting the values
of parameters. Here we see the impact of phi on R, < 1 which show that when we increase the
value of phi our R, < 1 decrease and eventually approaches to zero which will show that disease
will completely die out from population shown in figure (18).

5. Sensitivity Analysis of R,

Basic Reproductive Number plays an important role in infectious diseases, telling us that either
the disease will die completely, persist, or spread in the population depends on its values (Nakul
Chitnis, 22 February 2008). Here we will check the impact of each parameter on the R, and will see
that which parameter is more sensitive to R, . All the parameters and their values are given as For
w = 0.019, € =0.055,4 = 0.003,0 = 0.02,¢p =0.079,K = 1.5,y =§ = 0.07,n = 0.29 then (R, = 1.8 >
1).
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Symbols Formulas Parameters Description's Sensitive Index
H ARz — OR, # Natural death rate ~—1.01
K ou R,
k ARz oR, . £ Recruitment rate by birth and immigration =1
k ™ 9k "R,
w ARz — OR, L Effective contact rate =1
“  dw R,
ARe — oR, a Fraction of cats vaccinated at birth ~ —0.0104
@ ¢ 9¢p R,
ARz = IR, * ¥
14 L4 dy R, Termination rate of shedding of oocysts ~ —0.995
R, OR, o
g A" = FEa R, Loss rate of immunity ~ 0.0076
r  OR, €
€ A" = de R, Shedding rate of oocysts =1
g, OR, &
6 45" = 35 R_z Removal rate of oocysts (non-sanitation) ~ —0.194
n R, _ OR, . n Removal rate of oocysts (due to sanitation) ~ —0.805
Toon R,

From the above study we observe that the basic reproduction number R, is very sensitive to
changes in Recruitment rate by birth and immigration k, Effective contact rate w and Shedding rate
of oocysts €. If these increase R, will also increase in the same way and if these decrease R, will also
decrease because R, and these are directly proportional to R,. All the other param eters are inversely
proportional to R,. We can say that our basic reproductive number is more sensitive to w and o as if
we decrease, the contact rate of our R, decreases and we can approach disease free equilibrium
case. The same happens by decreasing the shedding rate of oocysts R, to less than zero. It is clear
from the results that when infected cats decrease the shedding oocysts in the environment, then
automatically the environment becomes less contaminated. Same, the rate of contact form
susceptible to infected cats and contaminated environment de creases. Thus, these two parameters
are more effective in controlling the disease.

6. Graphical Representation

ODE-45, DFE
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Fig. 2 and Fig. 3. Results from ODE-45
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Comparison of Euler, RK4, and NSFD for V(t)
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Fig. 14 and Fig. 15. Impact of parameters on S.V
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Impact of omega on Seriously Infected Class Impact of epsilon on Environment
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Fig. 8. Impact of p on R,

7. Conclusion

In recent years, the world has witnessed the devastating impacts of infectious diseases, both
pandemic (like COVID-19) and endemic (such as malaria and HIV). These diseases not only challenge
public health systems but also affect global economies and social structures. Introducing
”Vaccination” in our model, we examine how these this effect the proportion of T. gondii in cat
population. We deeply analyze the model to validate our model and calculate the basic reproductive
number R, which tells us about disease. We examined the conditions to exist the global stability for
disease free equilibrium and also for endemic equilibrium by calculating the threshold quantity R,.
The result shows the effective contact rate w, shedding rate of oocyts €, recruitment rate of cats k,
removal rate of oocyts due to sanitation n and vaccination rate ¢ as most sensitive parameters to R,.
We performed simulations based on theoretical results to analyze the effect of these parameters on
spread and managing T.gondii. After successfully calculating the results from study state solution of
the model, we checked the numerical techniques (Euler, RK4 & NSFD) from which we saw all the
results of Euler, RK4 and NSFD schemes. We saw that for long-term behavior of disease, Euler and
RK4 schemes have shown negative results and are inconsistent dynamically from which we say that
these are not reliable schemes. On the other hand, we also plotted the results of NSFD scheme, from
which we saw that no matter what the step size is, this scheme gives the reliable results and keeps
the population positive. From given experiment NSFD scheme is a reliable tool from which we can
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check our long-term behavior of disease. We checked the impact of parameters on each state
variable from which we saw that which parameter is more effecting the specific variables. Basic
Reproductive Number R, which plays a crucial role in this model for elimination of disease which
depends on its value by using the parameters. ¢ is the vaccination rate in cat population and from
the results, we have seen that it has a great impact on R,. By increasing its value, R, decreased, on
the other hand infected population also decreased. It was the basic motive of our project that by
increasing the vaccination rate in the population, we can control the disease. At the last, we saw the
sensitivity of parameters on the R, which showed that contact rate and shedding rate of oocysts are
more sensitive to R,. Their increment or decrement have the direct impact on the R,. The results say
that safe environment form oocysts is the best control strategy which can help in controlling the
disease and may be helpful for the healthcare centers in the world.

References

[1] Innes, E. A. "A brief history and overview of Toxoplasma gondii." Zoonoses and public health 57, no. 1 (2010): 1-7.
https://doi.org/10.1111/j.1863-2378.2009.01276.x

[2] Gonzélez-Parra, Gilberto, Sharmin Sultana, and Abraham J. Arenas. "Mathematical modeling of toxoplasmosis
considering a time delay in the infectivity of oocysts." Mathematics 10, no. 3 (2022): 354.
https://doi.org/10.3390/math10030354

[3]1  Flegr, Jaroslav, Joseph Prandota, Michaela Sovickovd, and Zafar H. Israili. "Toxoplasmosis—a global threat.
Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries." PloS one 9, no. 3 (2014):
€90203. https://doi.org/10.1371/journal.pone.0090203

[4]  Lv, Qing-Bo, Ao Zeng, Lin-Hong Xie, Hong-Yu Qiu, Chun-Ren Wang, and Xiao-Xuan Zhang. "Prevalence and risk
factors of Toxoplasma gondii infection among five wild rodent species from five provinces of China." Vector-Borne
and Zoonotic Diseases 21, no. 2 (2021): 105-109. https://doi.org/10.1089/vbz.2020.2658

[S]  Torgerson, Paul R., and Pierpaolo Mastroiacovo. "The global burden of congenital toxoplasmosis: a systematic
review." Bulletin of the World Health Organization 91 (2013): 501-508. https://doi.org/10.2471/blt.12.111732

[6] Pleyer, Uwe, Uwe Gross, Dirk Schliter, Henrik Wilking, and Frank Seeber. "Toxoplasmosis in Germany:
epidemiology, diagnosis, risk factors, and treatment." Deutsches Arzteblatt International 116, no. 25 (2019):
435, https://doi.org/10.3238/arztebl.2019.0435

[71  Turner, Matthew, Suzanne Lenhart, Benjamin Rosenthal, and Xiaopeng Zhao. "Modeling effective transmission
pathways and control of the world’s most successful parasite." Theoretical population biology 86 (2013): 50-
61.https://doi.org/10.1016/j.tpb.2013.04.001

[8] Sultana, Sharmin, Gilberto Gonzalez-Parra, and Abraham J. Arenas. "A generalized mathematical model of
toxoplasmosis with an intermediate host and the definitive cat host." Mathematics 11, no. 7 (2023): 1642.
https://doi.org/10.3390/math11071642

[9] Brandon-Mong, Guo-Jie, Nurul Asma Anati Che Mat Seri, Reuben Sunil-Kumar Sharma, Hemah Andiappan, Tian-
Chye Tan, Yvonne Ai-Lian Lim, and Veeranoot Nissapatorn. "Seroepidemiology of toxoplasmosis among people
having close contact with animals." Frontiers in immunology 6 (2015): 143.
https://doi.org/10.3389/fimmu.2015.00143

[10] Olopade, IsaacA., I. T. Mohammed, M. E. Philemon, T. O. Akinwumi, S. O. Sangoniyi, G. A. Adeniran, S. O. Ajao, and
S. 0. Adewale. "A Study of a Class Continuous SIR Epidemic Model with History." Journal of Basics and Applied
Sciences Research 2, no. 1 (2024): 54-60. https://doi.org/10.33003/jobasr-2024-v2i1-28

[11] Deng, Huifang, Rachel Cummins, Gereon Schares, Chiara Trevisan, Heidi Enemark, Helga Waap, Jelena Srbljanovic
et al. "Mathematical modelling of Toxoplasma gondii transmission: A systematic review." Food and waterborne
parasitology 22 (2021): e00102.https://doi.org/10.1016/j.fawpar.2020.e00102

[12] Ayoade, A. A., T. Oyedepo, and S. Agunbiade. "Mathematical modeling of Toxoplasma gondii between the
environment and cat population under vaccination and sanitation." Journal of Fractional Calculus and Applications
(JFCA) 14, no. 1 (2023): 75-87.

[13] Kamran, Ayesha, Shah Zeb, Siti Ainor Mohd Yatim, and Muhammad Rafig. "Numerical Investigation of a Chlamydia
Epidemic Model." Malaysian Journal of Fundamental and Applied Sciences21, no. 2 (2025): 1808-1822.
https://doi.org/10.11113/mijfas.v21n2.4085

[14] ljaz Khan, M., Kamel Al-Khaled, Ali Raza, Sami Ullah Khan, Jiyan Omar, and Ahmed M. Galal. "Mathematical and
numerical model for the malaria transmission: Euler method scheme for a malarial model." International Journal
of Modern Physics B 37, no. 16 (2023): 2350158. https://doi.org/10.1142/s0217979223501588

24


https://doi.org/10.1111/j.1863-2378.2009.01276.x
https://doi.org/10.3390/math10030354
https://doi.org/10.1371/journal.pone.0090203
https://doi.org/10.1089/vbz.2020.2658
https://doi.org/10.2471/blt.12.111732
https://doi.org/10.3238/arztebl.2019.0435
https://doi.org/10.1016/j.tpb.2013.04.001
https://doi.org/10.3390/math11071642
https://doi.org/10.3389/fimmu.2015.00143
https://doi.org/10.33003/jobasr-2024-v2i1-28
https://doi.org/10.1016/j.fawpar.2020.e00102
https://doi.org/10.11113/mjfas.v21n2.4085
https://doi.org/10.1142/s0217979223501588

Warisan Journal of Mathematical Sciences and Engineering
Volume 2, Issue 1 (2025) 11-25

(15]

(16]

(17]

Singh, Ravindra, Omwati Rana, Yogesh Kumar Sharma, and Shiv Shankar Gaur. "Numerical Approximation Methods
and Comparison with RK-4 Method for a Linear Differential Equation with Initial Conditions Using Scilab 6.1." Peer-
reviewed, Partially Open-access Journal 1, no. 6 (2024): 471. https://doi.org/10.63015/5¢c-2447.1.6

Mickens, Ronald E., and Talitha M. Washington. "A note on an NSFD scheme for a mathematical model of
respiratory virus transmission." Journal of Difference Equations and Applications 18, no. 3 (2012): 525-
529.https://doi.org/10.1080/10236198.2010.515590

Khoshnaw, Sarbaz HA, Rizgar H. Salih, and Sadegh Sulaimany. "Mathematical modelling for coronavirus disease
(COVID-19) in predicting future behaviours and sensitivity analysis." Mathematical Modelling of Natural
Phenomena 15 (2020): 33. https://doi.org/10.1051/mmnp/2020020

25


https://doi.org/10.63015/5c-2447.1.6
https://doi.org/10.1080/10236198.2010.515590
https://doi.org/10.1051/mmnp/2020020

