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study presents a mathematical model based on a system of ordinary differential
equations to investigate how tumor growth is affected by immune response and
chemotherapy. The study aims to develop mathematical models describing tumor-
immune interactions, analyze their stability across three scenarios which is the absence
of immune response and drug, presence of immune response without drug, and
presence of both and conduct numerical simulations of tumor-immune-drug dynamics.
Stability analysis is discussed for each case, with numerical simulations using the

Keywords: Runge-Kutta (RK4) method in MATLAB for selected parameters within the stability
Tumor dynamics; Ordinary differential region. The findings demonstrate that combining immune response with drug
equations; Runge-Kutta method intervention enhances tumor suppression compared to either approach alone.

1. Introduction

Cancer remains a leading cause of death in Malaysia, primarily due to uncontrolled cell division
that invades surrounding tissues and organs [1]. The immune system, particularly cytotoxic T
lymphocytes (CTLs), plays a crucial role in targeting tumor cells, but tumors often develop
mechanisms to evade immune detection [2-4]. Chemotherapy, commonly used to treat cancer,
targets rapidly dividing cells but causes significant side effects due to its lack of selectivity [5-7].
Hence,understanding the interaction between tumors, immune responses, and drugs is essential to
improve treatment strategies.

The mathematical modeling, especially through ordinary differential equations (ODEs), provides a
powerful tool to represent tumor dynamics and treatment effects over time [8,9]. Early models by
de Pillis and Radunskaya [10], and later by Robertson-Tessi et al., [11], focused on tumor-immune
system interactions. Villasana and Radunskaya [12] proposed a phase-specific model that integrated
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immune response and chemotherapy, though it only covered partial scenarios. More comprehensive
models by de Pillis and Radunskaya [13] incorporated tumor, immune, host, and drug effects using a
four-population model with optimal control, highlighting the importance of balancing treatment
efficacy with immune preservation [14-16].

Based on previous studies, mathematical models have been developed by researchers to
understand, analyze, and investigate tumor growth, particularly focusing on the interaction between
tumor cells and the immune system. However, most of these studies concentrate on only one factor
either the immune response or drug treatment and rarely combine both in a comprehensive model.
Furthermore, the stability of these models under varying treatment parameters has received limited
attention. In addition, several important parameters are often missing in existing models, making it
difficult to fully represent real treatment scenarios. These limitations have led to a restricted
understanding of actual tumor dynamics, especially in clinical contexts.

To address these gaps, this study develops a mathematical model that simultaneously integrates
the interaction between tumor cells, the immune system, and drug treatment within a single
framework. Unlike previous studies that focus on only one or two components, this model combines
all three elements at the same time. By doing so, it provides a more realistic and comprehensive
representation of actual treatment conditions.

2. The Mathematical Model

The detailed representation of mathematical model that integrates tumor growth, immune
response, and chemotherapy are describe in Table 1.

Table 1
Modelling differential equation for each cases

Case 1 : With the absence of both the immune response and drug.

dT,

dt = 2a,Ty — (d, + a)T},
dTy

dt = a;T; — (d3 + ay).

Case 2 : With the presence of immune response and absence of drug

dT,

E = 2a4TM - (Cll + dZ)TI - alTI,

dTy

ar a, Ty — (ds + a)Ty — c3Tyl,

dq pI(T; + Ty)™

— = — ,IT; — ¢, Tyl — d, 1.
dt @+ (T, + Ty 21~ Calm !

Case 3 : With the presence of both immune response and drug.
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dT,

dt
dTy,
dt
d, _
dt
ap
dt

— = 2a4TM - (Cll + dZ)TI - alTI,

—_— = alTI - (d3 + a4 + C3I)TM - fl(l - e_sz)TM,

I(T; + Ty)™
pI: + T) — Ty — ¢, Tyl — dy — f3(1 — e~ D),

—yD.

a+ (T, + T,)"

The variables denotes as :

T:

Tu

a1& ay

T, dsTuy, dil

Ci

pl (TI + TM)"

a + (TI+ TM)"

(constant) : £

(parameters):p,a and

n
!
D

The kills terms
f1(1-e20)Ty and
f(1-e#2)]
Coefficient y

3. Methodology

The number of tumor cells in interphase at time t.

The number of tumor cells during mitosis at time t.

The different rates of cells cycle or reproduce.

Proportions of natural cell death or apoptosis.

Losses of immune cell or tumor cell during the event of an encounter
for both cells.

Nonlinear increase in immune cell population due to the presence of
tumor cells.

The production rate of immune cells in the absence of a tumor should

be low.
This depends on the tumor type and the patient’'s immune health,
particularly its capacity to generate specific cytokines.

The number of immune cells at time t.
Amount of drug present at time t.

Represents the impact of drug on mitosis and immune system
respectively.

Incorporates both the elimination & absorbtion effects.

3.1.1 System of ordinary differential equation

The model is built using a system of ODEs.
The Existence and Uniqueness Theorem ensures the solution is valid: If f: R” = R" is a differentiable
function defined on the domain U and xo € U, then there exists a unique solution x(t) for some interval

around t = 0.

3.1.2 Stability analysis

. I L . . . . d
1. A steady-state solution, or equilibrium point, is found by setting the differential equations d—f

0. It represents a condition where the system remains constant over time.
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2. The stability of steady states is evaluated using the Routh-Hurwitz criterion. After linearizing the
system with the Jacobian matrix J, eigenvalues are obtained from the characteristic equation Det
(J - A1) = 0 and this leads to a characteristic equation of the form A"+ psA"1 + p,A ™2+ ... pp = 0.

3.1.3 Numerical method
1
Xiy1 = X; +g(f1 +2f, + 2f3 + f3),

1
Yinr =Yitg (g1 + 29, + 295 + g4),
where

fi = hf (&, x, y0),

h f g
f= hf(ti +Eﬁxi +§1'3’i +71)'

h f: g
= hf(ti +Eﬂxi +52'3’i +72)'

fa=hf(ti+hx; + f3,5: + g3),

g1 = hg(t, x;, yi),

h f g
92 =hg (ti T +%'Yi +71)'

h f: g
gs = hg (ti +E'xi +§2'J’i +72)'

ga =hg(t; + hx; + f3, 5, + g3).

4. Result and Discussion
4.1.1 Case 1 : With the absence of both the Immune response and drug

This case examines tumor cell behavior without immune response and chemotherapy. The
steady-state at (T,Tm) = (0,0) is analyzed by deriving the Jacobian matrix and the characteristic
equation. The Routh-Hurwitz criterion is applied to determine the stability of this equilibrium. Finally,

the necessary condition for tumor growth is identified based on the stability result for this casesis d
2a4al (1)

d2 +al
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Fig. 1. Stability region for Case 1 with the absence of both immune response and drug when value of parameter

Figure 3.1: Stability Region
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Without the immune system (R-1), tumors grow and (0,0) is an unstable steady state.
With the immune system (R-2), tumors decay and (0,0) becomes a stable steady state.
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Fig. 2. (a) : Phase portrait for stable steady
state (0,0) for Case 1 with the absence of
both immune response and drug when value
of parametera,;=0.8, d=1.6, a,=0.8 and
d,=0.11
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Fig. 2. (b) : Numerical Solution for stable
steady state (0,0) for Case 1 with the
absence of both immune response and
drug when value of parameter a;=1and d
= 1.2 with the initial condition T;=1.3, Ty, =
1.2
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Phase Portrait for Unstable Steady State
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Fig. 3. (a) : Phase portrait for unstable steady
state (0,0) for Case 1 with the absence of
both the immune response and drug when
valuea; =1,d=1.2,a,=0.8, d,=0.11
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Fig. 3. (b) : Numerical solution for unstable
steady state (0,0) for Case 1 with the
absence of both immune response and drug
when value of parameter a; =1 and d =1.2
with the initial condition 7,=1.3, T,y = 1.2

4.1.2 Case 2 : With the presence of Immune response and absence drug

This case studies tumor growth influenced by the immune response without drug intervention.
The system includes immune cells /(t), and the analysis focuses on their impact on tumor dynamics.
The necessary condition for tumor growth is:

d<

—(c1+c3) B + 2a4al

(2)

d2 + a1
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Stability Region with Inmune Response
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Fig. 5. The stability region with and
without immune response

i.  Without immune response, in R-5
and R-6 (tumor growth), the
steady state (0,0) is unstable.

ii. Without immune response, in R-7
(tumor decay), the steady state
(0,0) is stable.

iii. With immune response, in R-5
(tumor growth), the steady state

(0,0, f—) is unstable.
d1

iv. Withimmune response, in R-6 and
R-7 (tumor decay), the steady

state (0,0, é) is stable.
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Numerical Solution for Stable Steady State
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4.1.3 Case 3 : With the presence of both Immune response and drug

This case considers the combined effects of immune response and drug with different dosage which
is Dp=0.07, 0.1 and 0.15.
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Fig. 8. (a) : In Case 3, the focus is on the Fig. 8. (b) : In Case 3, the focus is on the
numerical solution for the drug system in the numerical solution for the drug system in the

presence of an immune responses when
value of parameter a4 =1, d =1.12 with the
initial condition T;=1.3, T,y = 1.2, I = 0.9 and
the drug dosage parameter set to Do = 0.07

presence of an immune responses when
value of parameter a; =1, d =1.12 with the
initial condition 7,=1.3, Ty =1.2, / = 0.9 and
the drug dosage parameter set to Do = 0.1
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Numerical Solution with drug, D = 0.15
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Fig. 8. (c) : In Case 3, the focus is on the
numerical solution for the drug system in the
presence of an immune responses when value of
parameter a;=1, d =1.12 with the initial
condition T;=1.3, Ty = 1.2, | = 0.9 and the drug
dosage parameter set to Do = 0.15

Table 2
Comparison of numerical tumor values at each stage for different drug amounts
Do =0.07 Do =0.1 Do =0.15

t T Tm T Tm T Tm
10 0.2513 0.1979 0.2504 0.1972 0.2491 0.1962
20 0.3357 0.2643 0.3347 0.2636 0.3332 0.2624
30 0.4861 0.3828 0.4848 0.3818 0.4828 0.3802
40 0.7142 0.5624 0.7121 0.5608 0.7087 0.5581
50 1.1525 0.9075 1.1480 0.9040 1.1407 0.8982
60  2.2900 1.8032 2.2766 1.7927 2.2551 1.7757

Table 3

Comparison of tumor values at each phase between a drug-free system and a drug- system,
both involving an immune response

Immune is present

t Without drug With drug Do =0.15
T Tm T Tm

10 0.2532 0.1994 0.2491 0.1962

20 0.3379 0.2661 0.3332 0.2624

30 0.4892 0.3852 0.4828 0.3802

40 0.7193 0.5664 0.7087 0.5581

50 1.1636 0.9163 1.1407 0.8982

60 2.3228 1.8291 2.2551 1.7757
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5. Conclusion and Recommendation

This study models tumor growth under varying biological conditions using differential equations.
Results show that immune response alone can suppress tumors but combining it with drug therapy
moderately enhances effectiveness. The stability analysis and simulations for all three cases
successfully meet the research objectives: the absence of both immune response and drug, the
presence of immune response without drug, and the presence of both immune response and drug.

5.1 Recommendation
1. Future models should include NK cells and cytokine interactions.
2. Optimal drug dosing and scheduling should be studied using control theory to improve
treatment outcomes and minimize side effects.
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