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Cancer progression often occurs due to immune evasion and the limitations of 
conventional treatments such as chemotherapy, which may also damage healthy cells. 
Mathematical modelling provides a useful framework for understanding the 
interactions between tumor growth, immune response, and drug intervention. This 
study presents a mathematical model based on a system of ordinary differential 
equations to investigate how tumor growth is affected by immune response and 
chemotherapy. The study aims to develop mathematical models describing tumor-
immune interactions, analyze their stability across three scenarios which is the absence 
of immune response and drug, presence of immune response without drug, and 
presence of both and conduct numerical simulations of tumor-immune-drug dynamics. 
Stability analysis is discussed for each case, with numerical simulations using the 
Runge-Kutta (RK4) method in MATLAB for selected parameters within the stability 
region. The findings demonstrate that combining immune response with drug 
intervention enhances tumor suppression compared to either approach alone. 
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1. Introduction 
 

Cancer remains a leading cause of death in Malaysia, primarily due to uncontrolled cell division 
that invades surrounding tissues and organs [1]. The immune system, particularly cytotoxic T 
lymphocytes (CTLs), plays a crucial role in targeting tumor cells, but tumors often develop 
mechanisms to evade immune detection [2-4]. Chemotherapy, commonly used to treat cancer, 
targets rapidly dividing cells but causes significant side effects due to its lack of selectivity [5-7]. 
Hence,understanding the interaction between tumors, immune responses, and drugs is essential to 
improve treatment strategies.              
    The mathematical modeling, especially through ordinary differential equations (ODEs), provides a 
powerful tool to represent tumor dynamics and treatment effects over time [8,9]. Early models by 
de Pillis and Radunskaya [10], and later by Robertson-Tessi et al., [11], focused on tumor-immune 
system interactions. Villasana and Radunskaya [12] proposed a phase-specific model that integrated 
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immune response and chemotherapy, though it only covered partial scenarios. More comprehensive 
models by de Pillis and Radunskaya [13] incorporated tumor, immune, host, and drug effects using a 
four-population model with optimal control, highlighting the importance of balancing treatment 
efficacy with immune preservation [14-16].  

Based on previous studies, mathematical models have been developed by researchers to 
understand, analyze, and investigate tumor growth, particularly focusing on the interaction between 
tumor cells and the immune system. However, most of these studies concentrate on only one factor 
either the immune response or drug treatment and rarely combine both in a comprehensive model. 
Furthermore, the stability of these models under varying treatment parameters has received limited 
attention. In addition, several important parameters are often missing in existing models, making it 
difficult to fully represent real treatment scenarios. These limitations have led to a restricted 
understanding of actual tumor dynamics, especially in clinical contexts. 

To address these gaps, this study develops a mathematical model that simultaneously integrates 
the interaction between tumor cells, the immune system, and drug treatment within a single 
framework. Unlike previous studies that focus on only one or two components, this model combines 
all three elements at the same time. By doing so, it provides a more realistic and comprehensive 
representation of actual treatment conditions. 
 
2. The Mathematical Model   
 

The detailed representation of mathematical model that integrates tumor growth, immune 
response, and chemotherapy are describe in Table 1.  
 
                           Table 1 
                           Modelling differential equation for each cases 
 

Case 1 : With the absence of both the immune response and drug. 
𝑑𝑇!
𝑑𝑡 = 2𝑎"𝑇# − (𝑑$ + 𝑎%)𝑇! , 
𝑑𝑇#
𝑑𝑡 = 𝑎%𝑇! − (𝑑& + 𝑎"). 

Case 2 : With the presence of immune response and absence of drug 

𝑑𝑇!
𝑑𝑡 = 2𝑎"𝑇# − (𝑐%𝐼 + 𝑑$)𝑇! − 𝑎%𝑇! , 

𝑑𝑇#
𝑑𝑡 = 𝑎%𝑇! − (𝑑& + 𝑎")𝑇# − 𝑐&𝑇#𝐼, 

𝑑%
𝑑𝑡 = 𝑓 +

𝜌𝐼(𝑇! + 𝑇#)'

𝛼 + (𝑇! + 𝑇#)'
− 𝑐$𝐼𝑇! − 𝑐"𝑇#𝐼 − 𝑑%𝐼. 

 
Case 3 : With the presence of both immune response and drug. 



Warisan Journal of Mathematical Sciences and Engineering 
Volume 3, Issue 1 (2025) 1-11 

3 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

The variables denotes as :  

T1	 : The number of tumor cells in interphase at time t. 
TM	 : The number of tumor cells during mitosis at time t.  
𝑎!&	𝑎"	 : The different rates of cells cycle or reproduce. 
d2T1,	d3TM,	,	d1I	 : Proportions of natural cell death or apoptosis. 
ci	 : Losses of immune cell or tumor cell during the event of an encounter 

for both cells. 
𝜌𝐼	(𝑇𝐼 + 	𝑇𝑀)!

𝛼	 +	(𝑇𝐼 + 	𝑇𝑀)!	
:	 Nonlinear increase in immune cell population due to the presence of 

tumor cells. 
(constant)	:	f	 : The production rate of immune cells in the absence of a tumor should 

be low. 
(parameters):ρ,α	and	
n	

: This depends on the tumor type and the patient’s immune health, 
particularly its capacity to generate specific cytokines. 

I	 : The number of immune cells at time t. 
D	 : Amount of drug present at time t. 
The	kills	terms		
f1(1-e--f2D)TM		and	
f3(1-e-f4D)I	

: Represents the impact of drug on mitosis and immune system 
respectively.  

Coefficient y  : Incorporates both the elimination & absorbtion effects. 
 
3. Methodology  
3.1.1 System of ordinary differential equation  
 
The model is built using a system of ODEs. 
The Existence and Uniqueness Theorem ensures the solution is valid: If f : Rn → Rn is a differentiable 
function defined on the domain U and x0 Є U, then there exists a unique solution x(t) for some interval 
around t = 0. 
 
3.1.2 Stability analysis 
 
1. A steady-state solution, or equilibrium point, is found by setting the differential equations  𝒅𝒙

𝒅𝒕
=

0. It represents a condition where the system remains constant over time. 

 

𝑑𝑇!
𝑑𝑡 = 2𝑎"𝑇# − (𝑐%𝐼 + 𝑑$)𝑇! − 𝑎%𝑇! , 

𝑑𝑇#
𝑑𝑡 = 𝑎%𝑇! − (𝑑& + 𝑎" + 𝑐&𝐼)𝑇# − 𝑓%(1 − 𝑒+,"-)𝑇# , 

𝑑%
𝑑𝑡 = 𝑓 +

𝜌𝐼(𝑇! + 𝑇#)'

𝛼 + (𝑇! + 𝑇#)'
− 𝑐$𝐼𝑇! − 𝑐"𝑇#𝐼 − 𝑑% − 𝑓&(1 − 𝑒+,#-)𝐼, 

𝑑𝐷
𝑑𝑡 = −𝑦𝐷. 
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2. The stability of steady states is evaluated using the Routh-Hurwitz criterion. After linearizing the 
system with the Jacobian matrix J, eigenvalues are obtained from the characteristic equation Det 
(J - λI) = 0 and this leads to a characteristic equation of the form  λn+ p1λ n-1 + p2λ n-2 + … pn = 0. 

 
3.1.3 Numerical method 

𝑥$%& = 𝑥$ +
1
6
(𝑓& + 2𝑓' + 2𝑓( + 𝑓)),	

𝑦$%& = 𝑦$ +
1
6
(𝑔& + 2𝑔' + 2𝑔( + 𝑔)),	

where    

𝑓& = ℎ𝑓(𝑡$ , 𝑥$ , 𝑦$),	

𝑓' = ℎ𝑓 M𝑡$ +
ℎ
2 , 𝑥$ +

𝑓&
2 , 𝑦$ +

𝑔&
2 N,	

𝑓( = ℎ𝑓 M𝑡$ +
ℎ
2 , 𝑥$ +

𝑓'
2 , 𝑦$ +

𝑔'
2 N,	

𝑓) = ℎ𝑓(𝑡$ + ℎ, 𝑥$ + 𝑓(, 𝑦$ + 𝑔(),	

𝑔& = ℎ𝑔(𝑡$ , 𝑥$ , 𝑦$),	

𝑔' = ℎ𝑔 M𝑡$ +
ℎ
2 , 𝑥$ +

𝑓&
2 , 𝑦$ +

𝑔&
2 N,	

𝑔( = ℎ𝑔 M𝑡$ +
ℎ
2 , 𝑥$ +

𝑓'
2 , 𝑦$ +

𝑔'
2 N,	

𝑔) = ℎ𝑔(𝑡$ + ℎ, 𝑥$ + 𝑓(, 𝑦$ + 𝑔(). 
 
 
4. Result and Discussion 
4.1.1 Case 1 : With the absence of both the Immune response and drug 
 

This case examines tumor cell behavior without immune response and chemotherapy. The 
steady-state at (TI,TM) = (0,0) is analyzed by deriving the Jacobian matrix and the characteristic 
equation. The Routh-Hurwitz criterion is applied to determine the stability of this equilibrium. Finally, 
the necessary condition for tumor growth is identified based on the stability result for this cases is   d 
< $.".%
	0$	1	.%

    (1) 
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Fig. 1. Stability region for Case 1 with the absence of both immune response and drug when value of parameter  
𝑎"  = 0.8 and d2 = 0.11 
 
i. Without the immune system (R-1), tumors grow and (0,0) is an unstable steady state. 
ii. With the immune system (R-2), tumors decay and (0,0) becomes a stable steady state. 

 

     

 

 

 

Fig. 2. (a) : Phase portrait for stable steady 
state (0,0) for Case 1 with the absence of 
both immune response and drug when value 
of parameter 𝑎!  = 0.8,  d = 1.6,  𝑎"  = 0.8  and   
d2 = 0.11 

 

Fig. 2. (b) : Numerical Solution for stable 
steady state (0,0) for Case 1 with the 
absence of both immune response and 
drug when value of parameter 𝑎!= 1 and d 
= 1.2 with the initial condition TI =1.3, TM = 
1.2 
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4.1.2  Case 2 : With the presence of Immune response and absence drug 
 

This case studies tumor growth influenced by the immune response without drug intervention. 
The system includes immune cells I(t), and the analysis focuses on their impact on tumor dynamics. 
The necessary condition for tumor growth is:   

d <  	+(	3%1	3&)	5		1	$6"6%
	7$	1	6%	

   (2) 

 

 

 

 

Fig. 3. (a) : Phase portrait for unstable steady 
state (0,0) for Case 1 with the absence of 
both the immune response and drug when 
value 𝑎!   = 1, d = 1.2, 𝑎"  = 0.8,  d2 = 0.11	
 

 

Fig. 3. (b) : Numerical solution for unstable 
steady state (0,0) for Case 1 with the 
absence of both immune response and drug 
when value of parameter 𝑎!  = 1 and d = 1.2 
with the initial condition TI =1.3, TM = 1.2 
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Fig. 4. The stability region for Case 2 with the 
presence of immune response but the 
absence of drug when value of parameter 
𝑎"= 0.8, c1=c3 = 0.9, d1= 0.29, d2 = 0.11, f  = 
0.036 and β = 0.1241 

i. With immune response, in R-
3 (tumor   growth), the steady 
state (0,0, ,	

0%
)  is unstable.  

ii. With immune response, in R-
4 (tumor decay), the steady 
state (0,0, ,	

0%
) is stable. 

 

Fig. 5. The stability region with and 
without immune response 

i. Without immune response, in R-5 
and R-6 (tumor growth), the 
steady state (0,0) is unstable. 

ii. Without immune response, in R-7 
(tumor decay), the steady state 
(0,0) is stable. 

iii. With immune response, in R-5 
(tumor growth), the steady state 
(0,0, ,	

0%
) is unstable. 

iv. With immune response, in R-6 and 
R-7 (tumor decay), the steady 
state (0,0, ,	

0%
) is stable. 
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4.1.3 Case 3 :  With the presence of both Immune response and drug 
 
This case considers the combined effects of immune response and drug with different dosage which 
is  D0 = 0.07, 0.1 and 0.15. 

 

 
 
 
 
 
 

 

Fig. 6. Numerical solution for stable 
steady state (0,0, #	

%!
) for Case 2 with the 

presence of immune response but the 
absence of drug when value of parameter 
𝑎!  = 1, d = 1.8, 𝑎"= 0.8 and d2 = 0.11 with 
the initial condition TI =1.3, TM = 1.2, I = 0.9 
 

Fig. 7. Numerical solution for unstable 
steady state for Case 2 (0,0, #	

%!
) with the 

presence of immune response but the 
absence of drug when value of parameter  
𝑎!  = 1, d = 1.2, 𝑎"= 0.8 and d2 = 0.11 with 
the initial condition TI =1.3, TM = 1.2, I = 0.9 
 

 

Fig. 8. (a) : In Case 3, the focus is on the 
numerical solution for the drug system in the 
presence of an immune responses when 
value of parameter 𝑎!  =1, d =1.12  with the 
initial condition TI =1.3, TM = 1.2, I = 0.9 and 
the drug dosage parameter set to D0 = 0.07 

 

Fig. 8. (b) :  In Case 3, the focus is on the 
numerical solution for the drug system in the 
presence of an immune responses when 
value of parameter 𝑎!  =1, d =1.12  with the 
initial condition TI =1.3, TM = 1.2, I = 0.9 and 
the drug dosage parameter set to D0 = 0.1 
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                Table 2  
                Comparison of numerical tumor values at each stage for different drug amounts 

 
t 

D0  = 0.07 D0  = 0.1 D0  = 0.15 
TI TM TI TM TI TM 

10 0.2513 0.1979 0.2504 0.1972 0.2491 0.1962 
20 0.3357 0.2643 0.3347 0.2636 0.3332 0.2624 
30 0.4861 0.3828 0.4848 0.3818 0.4828 0.3802 
40 0.7142 0.5624 0.7121 0.5608 0.7087 0.5581 
50 1.1525 0.9075 1.1480 0.9040 1.1407 0.8982 
60 2.2900 1.8032 2.2766 1.7927 2.2551 1.7757 

 

 Table 3 
 Comparison of tumor values at each phase between a drug-free system and a drug- system,  
 both involving an immune response 
 
t 

Immune is present 

Without drug With drug D0 = 0.15 

TI TM TI TM 

10 0.2532 0.1994 0.2491 0.1962 

20 0.3379 0.2661 0.3332 0.2624 

30 0.4892 0.3852 0.4828 0.3802 

40 0.7193 0.5664 0.7087 0.5581 
50 1.1636 0.9163 1.1407 0.8982 

60 2.3228 1.8291 2.2551 1.7757 

 

Fig. 8. (c) :  In Case 3, the focus is on the 
numerical solution for the drug system in the 
presence of an immune responses when value of 
parameter 𝑎!=1, d =1.12  with the initial 
condition TI =1.3, TM = 1.2, I = 0.9 and the drug 
dosage parameter set to D0 = 0.15 
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5. Conclusion and Recommendation  

This study models tumor growth under varying biological conditions using differential equations. 
Results show that immune response alone can suppress tumors but combining it with drug therapy 
moderately enhances effectiveness. The stability analysis and simulations for all three cases 
successfully meet the research objectives: the absence of both immune response and drug, the 
presence of immune response without drug, and the presence of both immune response and drug. 
 
5.1 Recommendation 

1. Future models should include NK cells and cytokine interactions. 
2. Optimal drug dosing and scheduling should be studied using control theory to improve 

treatment outcomes and minimize side effects. 
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