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Hepatitis B virus and Lassa fever etc. By using mathematical modeling, we analyze the
existence and stability of the DFE and EE and find the Reproductive number R_0. The
disease-free equilibrium is locally stable if R_0<1, and it is unstable if R_0>1 and disease
endemic points are stable if R_0>1. The transmission dynamics of Lassa fever is
analyzed numerically. In the present work two numerical schemes are developed
which are standard finite difference (SFD) and non-standard finite difference scheme
(NSFD). SFD scheme give conditionally convergence and do not behave well for certain
parameter h. Our main purposed is to developed Non-Standard Finite Difference
(NSFD) scheme which is unconditionally convergent for the Lassa fever model.

Keywords: Furthermore, we discuss the stability analysis of NSFD scheme. Finally, numerical
Lassa fever; reproductive number; SFD; experiments with all three schemes are presented to investigate the theoretically
NSFD; convergence results.

1. Introduction

Lassa fever disease is spread in the contemporary of northern Nigeria and west Africa in 1969. It
was first discovered when two female nurses are infected by this fever who works at Lassa mission
hospital [1,2]. It spread from dead mice, and the duration of Lassa fever disease is 2 to 21 days. Lassa
fever disease can be transfer from infected animal to human and also transfer from person to person.
In northern Nigeria and West African kingdoms, about 2 to 3 million peoples are affected and death
rate are 5000 to 10,000 individuals yearly [3-5]. Many researchers have participated and invested a
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significant amount of effort to investigating the dynamics of Lassa fever. In early 2018, over 300
confirmed positive cases of Lassa fever are reported in the month of March in Nigeria [6-9].

Mathematical modelling is a technique used to study the mechanisms that cause epidemic
spread. It is also used to predict the possible fate of an infection and to evaluate epidemics control
efforts [10]. Daniel Bernoulli, a trained physician, published the first explanation of mathematical
modelling of disease spread in 1766. Bernoulli developed a mathematical model to secure the
practice of immunization against Smallpox [11]. According to the calculations from this Framework,
widespread vaccinations against Smallpox would improve life expectancy from two to three years of
life. Different theoretical learnings have been designed on mathematical modelling of Lassa fever
transmission dynamics concentrating on a number of various problems. In Okuonghae and
Okuonghae [12] for the transmission of Lass fever illnesses, the author developed a SIS model paired
with a rat population. They proposed a primary reproductive number for their framework as well as
requirements for disease outbreaks. Mathematical Framework is a tool used to study the procedure
by which disease breaks out. It’s also used for analyzing the future direction of an outbreak and
analyzing plans to control an epidemic [13-18].

The present paper is organized by the following manner. In section 1.1 flow chart of Lassa fever
disease is constructed, and using this flow chart differential equations are derived for the mentioned
disease. DFE and EE points of Lassa fever disease of model (1) are discussed in section 1.2. The most
important threshold quantity which is known as basic reproduction number R, is find out in section
1.3. By using the reproduction number, in section 1.4 we find the stability of DFE and EE points. This
stability analyses shows that the DFE points exist only when basic reproductive number is less than
one and endemic points exit only when reproductive number is greater than one. In section 1.5, we
constructed the numerical scheme such as Euler, Runga-Kutta of order _4 and NSFD scheme. In
subsection of 1.5, we find the stability analyses for both disease free and endemic equilibrium points
of NSFD scheme and also discussed that NSFD is unconditionally convergent at every step size and
Euler and Runga-Kutta scheme are conditionally convergent. The comparison of numerical schemes
are also discuss in the last subsection of 1.5. At the end of this article a brief conclusion is given.

1.1 Flow Chart
The flow chart of model (S, L, 1, Is,R) is given below [19]
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Fig. 1. Flow chart of model (S,L,1,Is,R)
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We can explain the following nonlinear ordinary differential system using the flow chart above. The
Lassa fever disease model can be used to develop differential equations such as:

ds \
S'=—=mn—-BIS —uS

dt
L'—dL— IS L L—6,L
= = BIS —yL—uL~ 6,
I
I'=—=vyL—ul —6l—-06,1 1
dt 14 U 2 ¢y
I,
IS:EZHIL-I_HZI_MIS_(XIS
,_dR_
R'=— = al,— R )

Where, S(0) > 0,L(0) > 0,1(0) >0,I,(0) > 0,R(0) > 0and S(t) + L(t) + I(t) + I,(t) + R(t) <
N.

Model Properties: The feasible region C = {(S,L,1,I,R) € R2:S(t) + L(t) +I(t) + I,(¢t) +
R(t) < N; S(0)=0,L(0)=0,1(0) >0,I,(0) = 0,R(0) = 0} at any time t = 0 and the solution
of the model remnants positive and bounded.

Property for positivity: Consider equations of expression (1),

das dL
E|s=o:ﬂ20 ) E|L=0:ﬁ20
dl dL
Eh:o:yzo ) E|15=0:91;9220
dl
a|R=0:a20

Parameters:

The parameters of Lassa fever disease model [19] are given below:

1 Indicates the recruitment rate,

B Indicate the contact rate of susceptible,

U Indicates the natural death rate of individuals,

¥ Indicates individuals' rate of progression to the infection class,

0, Indicates the ratio at which latently infected people are isolated as a result of tracing
0, Indicates the rate at which persons with infections are quarantined,
0 Indicates the disease-related death,

a Indicates the rate of survival of isolated persons,

S Indicates the Susceptible class,

L Indicates the rate of latently,

I Indicates the infected class,

l; Indicates the isolated class,
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R Indicates the recovered class,

Parameters Values:

Table 1

Parametric values

Sr No# Parameters Values Reference
1. T 0.9 [19]
2. a 0.6 [19]
3. é 0.3 [19]
4. 0, 0.5 [19]
5. 6, 0.6 [19]
6. B 0.05(DFE) [19]
7. B 0.5(EE) [19]
8. M 0.2 [19]
9. Y 0.9 [19]

1.2 Disease-Free and Endemic Equilibrium Points

The formulated Mathematical model of Lassa fever has the disease free equilibrium at
Ey(S, L, I, I, R) = G,0,0,0,0), and endemic points are E*(S*, L*,I*, I, R*)

:(y+u+91)(u+5+92)

S*
By
Py et 09w+ 8+06,)
Br(y +p+6y) ’
o P pr 4t 0)(u+ 5+ 6;)

fu+6+6)(y+u+6;)

_0(Bym -G+ p+ 00w+ 5+ 6)) + 0, (Bym —puly + 1+ 0 + 5 + 65))

Is BT 6+ 0)0 tut o)t

e G (61(Bym — p&r + 1+ 6 + 6 +6,) + 0,(Bym — u(y + p + ) + 5 +6,)))
- Bru(u+8+6)(y + i+ 6)(u+a) '

1.3 Basic Reproductive Number (R,)

The most crucial threshold in every infectious disease is basic reproductionR;. It can help predict
if an infectious disease will spread through a population. Because our focus is on the population that
spreads the infection, system (1) were considered, also with basic reproduction number obtained
using the Next Generation Matrix [19].
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00 ()
ENCY
0 0

Because we find F971, so first of all we have to find the value of 971
As we know that,

U 0 0

1
4|0 — 0
y 1

Y+tu+0)u+6+6,) (u+6+86,)

now we find F9~1,

-nfy -np
uy+u+61)(u+6+6;)  p(u+6+6)
Fo™1 = 0 Py p ,
uy+u+61)(u+6+6;)  p(u+6+6)
0 0 0

thus,

R — npy
T uy+u+0)+8+06,)

1.4 Stability Analysis of Equilibria
We assume that,

g1 =m—PBIS—puS

gs=yL—pl =461—-6,1 », (1)
g4 = 91L + 921 - MIS - a]s
gs = als — uR

Theorem 1: WhenR,, < 1, so the DFE points are LAS (Locally Asymptotically Stable) for system (1).

Proof:
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dg: 09, 0g: 0g1 09,
as OdL ol dl, OR
dg, 0g, 0g, 0g, 0g;
as OdL al dl, OR
dgs 0gs 0gs 093 03

J=\%s oL a 1. oR |
09, 0g, O0BB, 09, 0g,
as oOL ol dl, OR
dgs 0gs 0dgs 0Jgs 0Jgs
as oOL ol dl, OR
Bl —u 0 —pS 0 0
Bl —(y+u+6,) BS 0 0
J = 0 y —(u+46+86,) 0 0 1,
0 0 0 a —U
—U 0 —'B—H 0 0
U
m I 0 pr 0 0
] <_' OFOPOIO) = ﬁ _(y + H + 1) u )
0 y —(u+6+6,) 0 0
0 0 0 a —U
pr
—u—-A 0 - 0 0
H u
pr
JE, — AI| = pr  —(y+u+6,)—-2 — 0 o |
0 y —(u+d6+6,)—2 0 0
0 0 0 a —-u—A
/11 = —U,
AZ =L
A3 = _(nu + a)l
—(+u+6,)-12 br
A= yTHTU u .
14 —(p+d6+0;)—4

Suppose,
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Plz_(y+1u+81)7

64
p, =2
2 H’
P3:ya

So, above matrix A becomes,

=0,

(P, =P, —2) — P,P; =0,
PP, — AP, +P,) + A2 —P,P; =0,
A2 — AP+ P)+PP,—P,P; =0,
A* = A(Py + P,) — (P,P3 — P1P)(1 — Ry) > 0,

WheneverR, < 1, utilizing the Routh-Hurwitz criterion [20],21] the remaining roots of A% —
A(P, + P,) — (P,P; — P;P,) = 0 must contain real negative aspects. Therefore, we deduce that E,
is LAS for Ry, < 1.

Theorem: 2 If Ry > 1, then DEE point E* of model (1) is LAS.

Proof:
Bl —u 0 —BS* 0 0
pr -y +u+6y) BS* 0 0
J(S* L1515, RY) = 0 y —(u+d6+86,) 0 0 |,
0 0 0 a —u
Bl —u 0 —BS* 0 0
B —y+u+0, BS* 0 0
|JE* — AlI| = 0 y —(u+d6+86,) 0 0|l=0,
0 0, 0, —(u+ta) O
0 0 0 a —uU
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(BI" — ) — A 0 —BS" 0
B —y+p+6,)—-42 BS* 0
|JE* — Al| = 0 y —(u+6+06,) -2 0
0 0 0 a
/11 = —U,
/12 = _(I'l'+a))
BI'—u)—2 0 —BS*
lJE* — Al| = BI* —(y+u+6,)—-2 BS*
by putting
¢, = (BI" — W),
Cz - _ﬂs*,
C3 :ﬁl*,

c=—(+p+6)—-2
cs = BS7,
Ce =7,
c; =—(u+6+06,),

Now matrix |JE* — AI| becomes.

Cl _/1 0 CZ
JE* —AI| = c3 cy,— A cs | =0,
0 C6 C7 _/1
N lea—4 Cs C3 c4—/1| _
(Cl A) Ce c; — /1| + C2 0 Ce - 09

(c1 = Dlles = V(e = ) — esc6] + c2(c3¢6) = 0,
(Cl - A) [C4_C7 - C4_/1 - C7/1 + /12] + CyC3Cq = 0,

where,

0
0
0
0

=0,
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C = cyc30,
(c; = Dlegc; —A(cy +¢;) + 221+ C =0,
€1C4C7 — C1A(Cy + C7) + 1A% — A+ 2%(cs +¢;) — A3+ C =0,
where,
G = €1C4Cy,
—A3 = 2%(cy + ¢4 + ¢7) + Alcics + c107 —C4c;) — G —C =0, (A)
—A3 = 2%(cy + ¢4 + ¢7) + A(cicq + €107 —C4c7) — G — C(Ry — 1) > 0,

By, applying Routh-Hurwitz criterion [20,21] all the roots of equation (A) must have negative real
parts if and only R, > 1.Therefore, the DEE point E™* is LAS.

ODE-45, DFE

80 T T T

S

5 60 L

E |

§ 40 _::
o
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0 A A
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Time (Days)

Fig. 2. Numerical Simulations of ODE-45 at point DFE

ODE-45, EE
80 1 I T 1 ' v ' ' 1 I
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= |
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Time (Days)

Fig. 3. Numerical Simulations of ODE-45 at point EE

Figure 2 shows the numerical results of Lassa fever disease of system (1) using ODE-45. In this Fig 1.2
graph shows the stability of DFE points and Figure 3 graph shows the stability of EE. The simulations
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result of above figures shows the stability of DFE at f = 0.05 and it shows the stability of endemic
points at § = 0.5 remaining values of parameters are given in table 1.

1.5 Numerical Analysis of Lassa Fever

In this division we created three different schemes for system (1) of Lassa fever disease. In
subsection 1.5.1 and 1.5.2, we worked on forward Euler and RK-4 schemes which shows convergence
on small step size and if we increased step size then these schemes shows divergent results. In
subsection 1.5.3 we constructed NSFD scheme which give unconditionally convergent and does not
depend on step size.

1.5.1 Forward Euler’s Scheme:

We developed Forward Euler scheme of Lassa fever of mathematical model for system (1).
s™l =" — h(m — Bi"s™ — us™)
["t1 ="+ h(Bi"s™ — (y — u — 0)I™)
="+ hlyl* = (u+ 6+ 6,)i"] ¢, 2)
it =it + [0 + 0,i" — (u + a)il']
r™tl =" 4 hlail — pur]

After the solution of numerical work through Euler’s structure give us the positivity results. When the
step size rises, then the solution of Euler’s structure does not remains stable. Thus, we conclude that
the solution of Euler’s structure is conditionally positive converge for all finite step size.

(a) (b)

(=2}
(=}
-
D
o

L

"

Population
F-y
o
Population
-y
(=}

N
o
n
o

o
o

0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001

(c) (d)
80 80 [~

60 L 60 L

"

Population
F-y
o
Population
-y
o

n
o

I ol
0 500 1000 0 50 100 150
Time (t), h=0.0001 Time (t), h=10

Fig. 3. Numerical Simulations of Euler’s Scheme at point DFE

Numerical results in Fig 3 for Lassa fever disease are obtained from Euler schemes for DFE points
which shows the conditionally convergence result at specific step size, as shown in graph (a) h =
0.01, (b) h = 0.001 and (c) h = 0.0001, and when we increase step size at (d) h = 10 it becomes
diverged.
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(a) (b)
80 80
S S
5 60 L -5 60 L
© | ® I
S 40 ” S 40 I
& R| | 8 R
a 20} a 2
\ 1.
0 0
0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001
(c) (d)
80 80
S S
.6 60 L .6 60 L
© | © I
S 40 " S 40 "
& RI| & R
o 20 h Q20
0 . 0"
0 500 1000 0 50 100 150
Time (t), h=0.0001 Time (t), h=10

Fig. 4. Numerical Simulations of Euler’s Sc

heme at point EE

In Fig 4 Euler scheme for endemic points of Lassa fever disease for system (1). The numerical results
are given in Fig 4 graph (a), (b) and (c) shows the convergence results at h = 0.01,0.001 and h =

0.0001 and (d) show the divergent of endemic points at h =

1.5.2 Fourth Order Runge-Kutta Scheme (RK — 4):

We create RK — 4 scheme for the mathematical modeling of

1 )
st =s" 4 E(P1 + 2p, + 2ps + p4)

1
ln+1 = ln + g(tl + 2t2 + 2t3 + t4)

1

"t ="+ g(‘h +2q; + 295 + q4)
1

i?+1 = l;l + g(vl + 21]2 + 21.73 + 1.74)

10.

Lassa fever for system (1),

(3)

-

1
it =gn +E(CI1 +2q, + 295 + q4)J

The numerical results obtained from this scheme are given below,
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(a) (b)
80 80
s S
&% L &% L
3 | 3 |
§ 40 i § 40 "
Q20 R o 20 R
0 0
0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001
(c) (d)
80 80
S S
8% L 5% L
i | i |
§ 40 —_— § 40 —_—
o 2o R o 20 R
0 0
0 500 1000 0 5 10 15 20
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Fig. 5. Numerical Simulations of RK — 4 Scheme at point DFE

The above Fig 5 the numerical simulations of system (1) through RK — 4 scheme for DFE points,
shows the conditionally convergent results at step size h = 0.01,0.001 and 0.0001 respectively in
(a), (b) and (c). As we increase the step size h = 10 in (d) this scheme becomes diverge.

(a) (b)
80 80
S S
§ © L] 5% L
ks I ks I
§ 40 _ § 40 "
o 20 R Q 20 R
0 0
0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001
(c) (d)
80 80
S | S
§% L &% L
s I ks I
§_ 40 —_ § 40 "
o 20 R Q 20 R
0 0
0 500 1000 0 5 10 15 20
Time (t), h=0.0001 Time (t), h=10

Fig. 6. Numerical Simulations of RK — 4 Scheme at point EE
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The above Fig 6 the numerical simulations of system (1) through RK — 4 scheme for EE points,
show the conditionally convergent results at step size h = 0.01,0.001, and 0.0001 respectively in
(a), (b), and (c), as shown in above simulations results. As we increase values of h = 10 in (d) scheme
becomes diverge.

1.5.3 Non-Standard Finite Difference (NSFD) Scheme

In subsection 1.5.3 we constructed the most important unconditionally scheme for system (1),
which is called non-standard finite difference scheme (NSFD). The NSFD method was first assembled
by Mickens which is much better scheme from other two scheme like Euler and RK — 4 scheme. For
construction of NSFD scheme we use (s™ 0™ i" i, ™) as numerical approximations of
S(),L(t),i(t), r(t),is(t), at t = nh and here h is called step size of this scheme. The standard finite
difference scheme are dependent on step size and it gives stability at some specific step size but the
standard finite difference scheme are step size independent and show convergence at all finite step
size at both DFE and EE points. So that we say that the NSFD scheme is most convenient scheme for
the stability analysis of epidemic flow chart of Lassa fever virus [22-29].

1 s"+ hm \
(1 + hBi™ + hw)
pen _ LA RBInST
(1 + hy + hu + h6,)
[ hyl™ +i" >
(1+hu+hs+ho,)|’
oy I RO + RO,
TS (1 + hy + ha)
ne1 T+ haig
(1 + hu) J

S

(4)

r

(@) (b)

(o]
(=}
o]
o

S |

D
o

11

Population
S
o
Population
N
o

N
o

20

(=}
o

500 1000 0 500 1000
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(c) (d)

o

o]
o

D
o
-

Population
B
o
Population

N
(=}

o

. " ‘
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Time (t), h=0.0001 Time (t), h=10

o

Fig. 7. Numerical Simulations of NSFD Scheme at point DFE
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In Fig 7 the numerical results obtained through most valuable NSFD scheme for DFE points. The
numerical simulations show unconditionally convergence as shown in Fig 7 (a), (b), (c) and (d). This
simulations results conclude that NSFD scheme always show positive results at all finite step sizes.

(@) (b)

Population
N
o
Population
=N
o

[ R
20 L 20 h
0 ' 0 : *
0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001
(c) (d)
80 T
S
§% Ll 8
® | ®
S 40 a1 3
Q. Q.
o ‘ ‘R o
Q. oo o
L | . _
0 500 1000 0 500 1000
Time (), h=0.0001 Time (t), h=10

Fig. 8. Numerical Simulations of NSFD Scheme at point EE
In Fig 8 numerical simulations for system (1) shows the convergence results for endemic points
through NSFD schemes. The graph (a), (b), (c) and (d) show the positive results for different step size
which shows that the NSFD scheme is unconditionally convergent for endemic points.

1.5.4 Stability analysis of NSFD scheme

In this division we find the steadiness of NSFD method of system (1). Let us consider

F oo gnt = s+ hm )
B ~ (1 + hBi™ + hy)
o e RIS
- " (14 hy + hu + h6,)
gt hyl™ +i" > )
B " (I+hu+hs+ney)(’
[ nea _ RO + O,
s (1+ hu + ha)
K:rn+1:r"+hai§l
(1 + hu) J

Theorem 3:
If Ry < 1 then DFE points of system (1) for NSFD scheme is LAS.

Proof:
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Let’s we take Jacobean matrix of order 5x5,

dF o0F O0F O0F O0F
ds al di di, or
G 0dG 0G 0G 0G
as al 9 iy or
0H 0OH O0OH O0H OH
I=\% @ & @, or |
al dl ol 0l 0l
ds dl 9i i, or
0K 0K 0K 0K 0K
ds ol di 9ig, or
1
1+ hpBi + hu 0 0 0 0
hBi 1 hBs
1+hy+hu+h6, 1+hy+hu+h6, 1+hy+hu+h6, 0 0
hy 1
] = 0 0 0
1+hy +h6+h6, 1+hy+hs+ho,
ho, h6, 1
0 1+ hu+ ha 1+ hu+ ha 1+ hu+ ha)
ha 1
0 0 0 1+ hu 1+ hu
1
1+ ha 0 0 0 0
1 hBs
1+hy +hu+h6, 1+hy+hu+ho, 0 0
hy 1
J(Eo) = 1+hy+hS6+hO, 1+hy+hs+ho, 0 o0
ho, ho, 1
0 1+ hu + ha 1+ hu + ha (1+ hu+ ha)
ha 1
0 0 0 1+ hu 1+ hu
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J(Eo—2)

J(Eq—A) =

A3

1

= 0
(1+hy+ha)> ’

0 0 0
1 B hfs 0
1+ hy + hu + h6, 1+ hy + hu + ho,
hy 1 _ 3 0
1+hy+h6+h6, 1+hy+hd+ho,
ho, hé, 1 _,
1+ hu+ ha 1+ hu+ ha (1 + hy+ ha)
0 0 ha
1+ hu
1
Al_l+hy>0’
1
/12—1+h#>0,
1 hBs
1+hy+hu+hel_'1 1+ hy + hu + ho,
hy 1
1+ hy + hé + ho, 1+hy+h§+h@z_’1 0
ho, ho, 1
1+ hu + ha 1+ hy+ ha

-1
1+ hu + ha)

Remaining eigen values are evaluated numerically and largest eigen values that is spectral radius
graphs is plotted is given below.

Jacobian at DFE

0.55

0.5

0.45

04F

035

03F

0.25

Spectral Radius of Jacobian Matrix

0.2

0.15 +
0 1

Step Size

<104

Fig. 9. Largest Eigen values of the system at point DFE
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The figure 9 show that the largest eigen values

is less than one at point DFE.

Theorem: 4 If Ry > 1, then DEE points E* of the discrete NSFD expression (1) is LASY h > 0.

Proof: In the similar way as in Theorem 3, the Jacobean matrix can be obtained as

1
_ 0 0 0 0
1+ hBi+ hu
hpi 1 hfs 0 0
1+hy+hu+h8;, 1+hy+hu+h6;, 1+hy+hu+ho,
hy 1
] = 0 0 0 )
1+hy+hS+h6, 1+ hy+hé+ho,
0 hé, hé, 1
1+ hu+ ha 1+ hu+ ha 1+ hu+ ha)
0 0 0 ha 1
1+ hu 1+ hu
By putting DEE point E*, we get
J(E™)
! 0 0 0 0
1+ hBi* + hu
hBi* 1 hBs* 0 0
1+hy+hu+h6;, 1+hy+hu+h6;, 1+hy+hu+ho,
hy 1
= 0 0 0 ,
1+hy+hS+h6, 1+ hy+hé+ho,
0 hé, hé, 1
1+ hu+ ha 1+ hu+ ha 1+ hu+ ha)
0 0 0 ha 1
1+ hu 1+ hu
1 0 0 0 0
1+hBi* +hu
hBi* 1 hBs* . .
1+hy+hu+h0;, 1+hy+hu+ho, 14 hy + hu + h6,
. 0 hy ! yl 0 0
VE* —All = T+hy+ho +h8, 1+hy+ho+ho, =0,
0 ho, he, 1 N 0
1+ hu+ ha 1+ hu+ ha (1+hu+ha)
0 0 0 ha L .,
1+ hu 1+h,u_
A= ! >0
Y"1+
1
A2

= 0
(1+h,u+ha)> ’
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1
T R+ he

As 0,

Remaining eigen values are evaluated numerically and largest eigen values that is spectral radius
graphs is plotted is given below.

Jacobian at EE

0.7

0.7

0.65

0.6

Spectral Radius of Jacobian Matrix

Step Size <10%

Fig. 10. Largest Eigen values of the system at point EE
The figure 10 show that the largest eigen values is less than one at point EE.
1.5.5 Positivity

The most significant physical characteristics of sub-population (S,L,I,Is,R) used in the
compartmental epidemic flow chart is positivity. The implicit numerical integration scheme and
mathematical induction concept are used to study and ensure this fact.

Theorem:5 Let the state variables S(t), L(t), I(t), I;(t) and R(t) involved in the scheme are positive
at t = 0; furthermore, if Additionally, every parameter is positive, then S**1 > 0, L**1 > 0, I**1 >
0,I1*1 >0 and R"*1 > 0.

Proof:
Using the mathematical induction principle and taking into consideration equation (4), we proceed
on as follows:

gnHt _ S"+ hm
(14 hBI™ + hu)
[t L™ + hBI"S™

(14 hy + hu + h6,)

1 hyL™ + I
(14 hu+ hé + ho,)
o1 _ 18+ hO, L + ho, I
s (1+ hu + ha)
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First, we Substitute n = 0 in above equations and reached.
B SO+ hm -0 6
(14 hBIO+ hp) T (6)

51

Similarly,

L LP+hprs®
(1+hy +hu+h6,) —

B hyL® + I° -

" (1+hu+hé+h,) "~

- 19+ h6,L° + ho,I°

s (1+ hu + ha)

_ R°+hal) -

(A4 hw T J

1

0

( (8)

1

For n = 1, we arrive at.

S+ hm
€©))

2 — 20
(1 + hBIT + hp)

Similarly,

__ Lemprst
(A +hy+hu+ho) =
hyL! + I*
= >0
(1+ hu + hé + hoy)

1 ) 1 > (10)
, 1L+ 6,1 + ho,l
]2 =
s (1+ hu + ha)
_ R'+ hal§ -
S (A +hw T J

L2

2

2

Moreover, let us assume that the above system (10) ensures the positive property for the values
ofn=234,..,.n—1,ie,5">0,L">0,I">0,[}) >0 andR" > 0forn = 2,3,4,...,n—1and
sub-population (S, L, I, Is,R).

Now, forn € Z,

S"+ hm -0 11
(1+hBI™+hw) — b

Sn+1 —

Similarly,
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[+t L™ + hpI™S™ > 0\
(1+ hy + hu + h6,)
[ hyL™ + 1" >0
(14 hu+ hé + ho,) \ (12)
I} + hO, L™ + hO,I™ ’
ntl - >0
1+ hu + ha)
Rt R™ + hall >0
(1 + hu) J

Thus, proposed approach confirms the positive for the state variables S(t), L(t), I(t), [;(t) and R(t)
vneZzt.

1.5.6 Boundedness

Theorem:6 Suppose S°, 10,1919 and R are finite such that SO+ L%+ 1%+ 12 + R® < 1. Also
m,f,y,01,0, and a are all conclusive in flow chart. Then discretized state variables,
gn+l pn+l n+l n+l and R™1 are bounded by recrossing defined real constant d, ., such that
gn+l pn+l nl ntl and R+ < d,,, foralln € Z* where d,,,; = 4d,, + ht + I"h(BS™ + 6,) +
L"h(y +6,) + hal? and d,.,; = 4 + h + I°h(BS° + 0,) + L°h(y + 6,) + hal?.

Proof: Examining the equations for the sub-population (S,L,1,Is,R) in the implicit numerical
integration method.

S™1(1 4+ hBI™ + hu) = S™ + hn (13)
L"™1(1 4 hy + hu + h6,) = L™ + hBI"S™ (14)
I"*1(1 + hu + hé + hO,) = hyL™ + I (15)
1M1+ hu + ha) = IF + hO, L™ + hO,I" (16)
R™1(1 + hy) = R™ + hall (17)

By adding all above the equations.

= (S™+ LM+ M+ I+ R+ hp) + S™TRBIM + LYA(y + 6,) + IMTR(S + 6,)

+ IM1ha
=@"+L"+1"+ I+ R") + hn+ ["h(BS™ + 0,) + L"h(y + 6,)
+ hal (18)

By substituting n = 0, in above equation (13).

= ST+ L+ 11+ 11+ RYA + hw) + SThBI® + L*h(y + 6,) + I*h(6 + 60,) + I1ha
=SSO+ Lo+ 1412 + R%) + hm + I°h(BS° + 6,) + L°h(y + 6,) + hal?
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=SS+ L+ 1T+ 1+ RYA + hp) + SThBIC + L*h(y + 6,) + I*h(6 + 6,) + I1ha
<5+ hm +1°h(BS° + 0,) + L°h(y + 6,) + hal? = d,

= ST+ L+ + 1+ RYA + hp) + SThBI® + L*h(y + 6,) + I*h(6 + 0,) + I1ha < d,

ST+ hu + hBI%) + L*(1 + hu + hy + h6)) + I*(1 + hu + hé + hO,) + 12(1 + hu + ha)
+R'(1+hu) <d,

=Sl <d,
L' <d,;
' <d,
1} <d,
R < d,

By substituting n = 1, in above equation (13).
= (S2+ L2+ 12+ 12+ R>)(1 + h) + S2hBI* + L2h(y + 01) + I?h(6 + 6,) + [2ha

=S+ L+ 1P+ 12+ RY) + hn + I*h(BST + 6,) + L*h(y + 0,) + hall

= (S2+ L2+ 12+ 12+ R?>)(1 + hu) + S2hBI* + L2h(y + 0,) + I?h(6 + 6,) + I2ha
< 5d; + hr + I*"h(BS* + 0,) + L*h(y + 0,) + hall = d,

= (S2+ L2+ 12+ 12+ R>)(1 + hy) + S2hBI* + L2h(y + 01) + I?h(6 + 6,) + [2ha < d,

= S2(1+ hu+ hpIY) + L>(1 + hu + hy + h0;) + I?(1 + hu + hS + h6,) + 12(1 + hu + ha)

+ R?(1+ hu) < d,
= S?<d,
> <d,
12 <d,
12 <d,
R? < d,

Now,
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= S™I(1 + hBI™ + hu) + L™ (1 + hy + h6; + hp) + "1 (1 + hu + hé + h0,)
+ IM1(1 + hy + ha) + R™1(1 + hp)
< 5d, + h + I"h(BS™ + 0,) + L"h(y + 60,) + hall = d,,.q

Sl <d M <dy g, I < dy g, VT < dyy, and R™ < d,.q, where dp.q, = 4d, +
ht + I"h(BS™ + 0,) + L*h(y + 0,) + hal? = 4 + h + I°h(BS° + 6,) + L°h(y + 6,) + hal?.

Hence, S™+1, [**+1, [*+1 [ "+ and R™*1 are bordered by Rd,,., Vn € Z*.

1.5.7 Consistency analysis

In subsection analyzes the consistency of an implicit numerical integration strategy using Taylor's
series expansion. Firstly, choose expression (13) of the implicit numerical integration scheme and
apply Taylor’s series expansion of S™+1,
Sl =gn + h§+h—ZE h—3£+
2! de? - 3! de3

In the following equation
S™1(1+ hBI™" + hy) = S™ + hr

Sm 4 hdS hzdzs hd’s 4+ J(A+hBI"+hy) =S" +h
2a T 3ae B w= r
S™ + S™hBI™ 4+ S™h +h +h2 1"dS+h2 ds+ hzdzs ned's + -+ ) (1 + hBI™ + hu)
B H B H 2! dt2 3! dt3 B H
=S"+hn
S™hBI™ + S™h +h +h2 I"dS+h2 ds hzdzs hd’s + -+ | (1 + hBI™ + hy) =

o dS . ds dS h d*s h%d3s ,
h SBI + S ,u+d—+h,81 —+h[,l Z'dtz gﬁ-}' (1+hﬂ1 +hu) =

oy dS L ds ds (hd*S h?d’s N
Sﬁ] + S ﬂ+d—+h,8[ —+hﬂ— EF 5@4‘ (1+hﬁ1 +hﬂ):T[

Apply h — 0,

npn n gz
S"pI1 +S'u+dt s
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das o
prinE A CI ) (19)

Now, for equation (14) apply Taylor’s series expansion.

e _Ln+hdL+h2d2L+h3d3L+
N dt = 2!dt?2  3!de3

L""1(1 + hy + hu + h6,) = L™ + hBI"S™

L”+hdL+h2d2L+h3d3+ (1 + hy + hy + h6,) = L™ + hBI"S™
dt = 2'dt2  31de3 Vo v B

By applying h — 0, we get the following expression.

dL
E=ﬁ1”5”—L”(y+u+91) (20)

We choose expression (15),

(1 —1"+hd1+h2d21+h3d3]+
- dt = 2'dt2 = 3!dt3

I"*1(1 + hu + hé + hB,) = hyL™ + I

"+ h—+—

dl  h? d21+h3 d31+
dt 2'dt?z  31ded

--)(1+hy+h6+h92) = hyL" + I

Apply h — 0, and after some calculation we get.

di
— =YL ="+ 5 +6)) (21)

Pick the equation (16), then apply the Taylor’s series expansion.

dls h%*d*l;  h3dl
B =1 +h—+——+——5+
§ $ de 2! de2 3! ded

1M1+ hu + ha) = I} + hG, L™ + hO,I"

L dlg h*d’ly Rl o N N
IS +ha+§ﬁ+§ﬁ+ (1+h,u+h0()—15 +h91L +h921

Put limit h — 0, we get the result.
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dl
d—ts = hO,L" + hO,I™ — [*(u + ) (22)
From equation (17),
R R7 4 hdR N h? d2R+ h3 d*R N
- dt = 2! de2  3!de
R™1(1 4+ hy) = R™ + hall
. dR h*d°R h*d’R - N
R +hE+EW+§F+ <+ | (1 + hu) = R™ + hall
By applying h — 0, we reached.
dR
e al — R™hu (23)

1.5.8 Comparison analysis of SFD and NSFD schemes

The comparison analysis of both numerical schemes are presented in this section, which shows the
reliability of these schemes.

Comparison DFE (a) Comparison DFE (b)

S 80 S 80
% 60 Euler g 60 Euler
8. — - RK-4 8‘ w— = RK-4
o NSFD o NSFD
o 40 o 40
2 a
Z20 $ 20
? 2 |
%) (%)
0 500 1000 0 500 1000
Time (t), h=0.01 Time (t), h=0.001
- Comparison DFE (c) - Comparison DFE (d)
S 80 o 80
Z " Euler 3 . Euler
8. — - RK-4 8- — = RK-4
o NSFD o NSFD
o 40 o 40
) ]
$ 20 $ 20
(&} [&]
(g —_———————————— g 1
0" 0
2 o 500 1000 © o 500 1000
Time (t), h=0.0001 Time (t), h=10

Fig. 11. Numerical Simulations of NSFD Scheme at point DFE
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Comparison EE (a) Comparison EE (b)

80 80

Euler
w— - RK-4
NSFD

Euler
w— - RK-4
NSFD

60 60

40 40

20 20

Susceptible Population
Susceptible Population

(=

0 500 1000 500 1000
Time (t), h=0.01 Time (t), h=0.001
Comparison EE (c) Comparison EE (d)

80
Euler

60 — -RK-4
NSFD

40

20

O J
0

0 500 1000 500 1000
Time (t), h=0.0001 Time (t), h=10

Euler
— -RK-4
NSFD

Susceptible Population
3 3
Susceptible Population

Fig. 12. Numerical simulations of NSFD Scheme at point EE

Figure 12 Numerical results represents the comparison of SFD and NSFD schemes. In Fig 1.9, graph
(a) and (b) gives the simulations of DFE point and graph (c) and (d) give the simulations for EE point.

2. Conclusion

A mathematical model for Lassa fever disease are examined in this paper. A formulated
mathematical model consist of five variables which are expressed in differential equations. We find
disease free and endemic points by using these differential equations, basic reproductive value is
used to find the stability of mathematical model of Lassa fever. Furthermore, we use two different
numerical schemes such as SFD and NSFD scheme to numerically analyze the flow chart of Lassa fever
virus. We see that in SFD scheme shows conditionally convergent for both endemic and disease free
equilibrium points. After that we constructed the most frequent scheme for numerically analyze the
Lassa fever disease model which is known as NSFD scheme. This scheme gives us unconditionally
convergent results for both DFE and EE points. It means that it does not depend on step, it remain
stable at all finite step size and give convergence result. Numerical simulations are formed for all
above schemes to validate the theoretical and mathematical work.
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