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Lassa fever is an acute Hemorrhagic viral fever which is first discover in a town Lassa. 
In this paper we constructed a mathematical model to derive a relation of ordinary 
differential equations with saturated incident rate. Mathematical modelling is very 
useful tool in the field of epidemiology to study the behavior of diseases like COVID-19 
Hepatitis B virus and Lassa fever etc. By using mathematical modeling, we analyze the 
existence and stability of the DFE and EE and find the Reproductive number R_0. The 
disease-free equilibrium is locally stable if R_0<1, and it is unstable if R_0>1 and disease 
endemic points are stable if R_0>1. The transmission dynamics of Lassa fever is 
analyzed numerically. In the present work two numerical schemes are developed 
which are standard finite difference (SFD) and non-standard finite difference scheme 
(NSFD). SFD scheme give conditionally convergence and do not behave well for certain 
parameter h. Our main purposed is to developed Non-Standard Finite Difference 
(NSFD) scheme which is unconditionally convergent for the Lassa fever model. 
Furthermore, we discuss the stability analysis of NSFD scheme. Finally, numerical 
experiments with all three schemes are presented to investigate the theoretically 
results. 
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1. Introduction 
 

Lassa fever disease is spread in the contemporary of northern Nigeria and west Africa in 1969. It 
was first discovered when two female nurses are infected by this fever who works at Lassa mission 
hospital [1,2]. It spread from dead mice, and the duration of Lassa fever disease is 2 to 21 days. Lassa 
fever disease can be transfer from infected animal to human and also transfer from person to person. 
In northern Nigeria and West African kingdoms, about 2 to 3 million peoples are affected and death 
rate are 5000 to 10,000 individuals yearly [3-5]. Many researchers have participated and invested a 
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significant amount of effort to investigating the dynamics of Lassa fever. In early 2018, over 300 
confirmed positive cases of Lassa fever are reported in the month of March in Nigeria [6-9].  

Mathematical modelling is a technique used to study the mechanisms that cause epidemic 
spread. It is also used to predict the possible fate of an infection and to evaluate epidemics control 
efforts [10]. Daniel Bernoulli, a trained physician, published the first explanation of mathematical 
modelling of disease spread in 1766. Bernoulli developed a mathematical model to secure the 
practice of immunization against Smallpox [11]. According to the calculations from this Framework, 
widespread vaccinations against Smallpox would improve life expectancy from two to three years of 
life. Different theoretical learnings have been designed on mathematical modelling of Lassa fever 
transmission dynamics concentrating on a number of various problems. In Okuonghae and 
Okuonghae [12] for the transmission of Lass fever illnesses, the author developed a SIS model paired 
with a rat population. They proposed a primary reproductive number for their framework as well as 
requirements for disease outbreaks. Mathematical Framework is a tool used to study the procedure 
by which disease breaks out.  It’s also used for analyzing the future direction of an outbreak and 
analyzing plans to control an epidemic [13-18]. 

The present paper is organized by the following manner. In section 1.1 flow chart of Lassa fever 
disease is constructed, and using this flow chart differential equations are derived for the mentioned 
disease. DFE and EE points of Lassa fever disease of model (1) are discussed in section 1.2. The most 
important threshold quantity which is known as basic reproduction number 𝑅! is find out in section 
1.3. By using the reproduction number, in section 1.4 we find the stability of DFE and EE points. This 
stability analyses shows that the DFE points exist only when basic reproductive number is less than 
one and endemic points exit only when reproductive number is greater than one. In section 1.5, we 
constructed the numerical scheme such as Euler, Runga-Kutta of order _4 and NSFD scheme. In 
subsection of 1.5, we find the stability analyses for both disease free and endemic equilibrium points 
of NSFD scheme and also discussed that NSFD is unconditionally convergent at every step size and 
Euler and Runga-Kutta scheme are conditionally convergent. The comparison of numerical schemes 
are also discuss in the last subsection of 1.5.  At the end of this article a brief conclusion is given. 
 
1.1 Flow Chart 
The flow chart of model (𝑆, 𝐿, 𝐼, 𝐼𝑠, 𝑅) is given below [19] 

 

Fig. 1. Flow chart of model (𝑆, 𝐿, 𝐼, 𝐼𝑠, 𝑅) 
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We can explain the following nonlinear ordinary differential system using the flow chart above. The 
Lassa fever disease model can be used to develop differential equations such as: 

𝑆" =
𝑑𝑆
𝑑𝑡

= 𝜋 − 𝛽𝐼𝑆 − 𝜇𝑆	

𝐿" =
𝑑𝐿
𝑑𝑡 = 𝛽𝐼𝑆 − 𝛾𝐿 − 𝜇𝐿 − 𝜃#𝐿			

𝐼" =
𝑑𝐼
𝑑𝑡
= 𝛾𝐿 − 𝜇𝐼 − 𝛿𝐼 − 𝜃$𝐼	

𝐼%" =
𝑑𝐼%
𝑑𝑡 = 𝜃#𝐿 + 𝜃$𝐼 − 𝜇𝐼% − 𝛼𝐼%

𝑅" =
𝑑𝑅
𝑑𝑡

= 𝛼𝐼% − 𝜇𝑅 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

,																																					(1) 

Where, 𝑆(0) ≥ 0, 𝐿(0) ≥ 0, 𝐼(0) ≥ 0, 𝐼%(0) ≥ 0, 𝑅(0) ≥ 0 and 𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝐼%(𝑡) + 𝑅(𝑡) ≤

𝑁. 

Model Properties: The feasible region 𝐶 = {(𝑆, 𝐿, 𝐼, 𝐼%, 𝑅) ∈ 𝑅&' :	𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) + 𝐼%(𝑡) +
𝑅(𝑡) ≤ 𝑁	; 	𝑆(0) ≥ 0, 𝐿(0) ≥ 0, 𝐼(0) ≥ 0, 𝐼%(0) ≥ 0, 𝑅(0) ≥ 0} at any time 𝑡 ≥ 0 and the solution 
of the model remnants positive and bounded. 
 
Property for positivity: Consider equations of expression (1), 

𝑑𝑆
𝑑𝑡 |()! = 𝜋 ≥ 0											,												

𝑑𝐿
𝑑𝑡 |*)! = 𝛽 ≥ 0 

𝑑𝐼
𝑑𝑡 |+)! = 𝛾 ≥ 0											,												

𝑑𝐿
𝑑𝑡 |+!)! = 𝜃#, 𝜃$ ≥ 0 

𝑑𝐼
𝑑𝑡 |,)! = 𝛼 ≥ 0 

Parameters: 
 
 The parameters of Lassa fever disease model [19] are given below:   
 𝜋 Indicates the recruitment rate, 
 𝛽 Indicate the contact rate of susceptible, 
𝜇 Indicates the natural death rate of individuals, 
𝛾 Indicates individuals' rate of progression to the infection class, 
𝜃# Indicates the ratio at which latently infected people are isolated as a result of tracing 
𝜃$	Indicates the rate at which persons with infections are quarantined, 
𝛿	Indicates the disease-related death, 
𝛼	Indicates the rate of survival of isolated persons, 
 𝑆		Indicates the Susceptible class, 
𝐿		Indicates the rate of latently, 
𝐼		Indicates the infected class, 
𝑙#	Indicates the isolated class, 
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𝑅		Indicates the recovered class, 
 
Parameters Values: 
 

Table 1  
Parametric values 
Sr No# Parameters Values Reference 

1.  𝜋 0.9 [19] 
2.  𝛼 0.6 [19] 

3.  𝛿 0.3 [19] 

4.  𝜃" 0.5 [19] 
5.  𝜃# 0.6 [19] 

6.  𝛽 0.05(𝐷𝐹𝐸)	 [19] 

7.  𝛽 0.5(𝐸𝐸) [19] 
8.  𝜇 0.2 [19] 

9.  𝛾 0.9 [19] 

 
1.2 Disease-Free and Endemic Equilibrium Points 
 
The formulated Mathematical model of Lassa fever has the disease free equilibrium at  

 𝐸!(𝑆, 𝐿, 𝐼, 𝐼%, 𝑅) = H-
.
, 0,0,0,0I, and endemic points are 𝐸∗(𝑆∗, 𝐿∗, 𝐼∗, 𝐼%∗, 𝑅∗) 

𝑆∗ =
(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)

𝛽𝛾 , 

𝐿∗ =
𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)

𝛽𝛾(𝛾 + 𝜇 + 𝜃#)
, 

𝐼∗ =
𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)

𝛽(𝜇 + 𝛿 + 𝜃$)(𝛾 + 𝜇 + 𝜃#)
, 

𝐼%∗ =
𝜃#J𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)K + 𝜃$J𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)K

𝛽(𝜇 + 𝛿 + 𝜃$)(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛼)
, 

𝑅∗ =
𝛼 H𝜃#J𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)K + 𝜃$J𝛽𝛾𝜋 − 𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)KI

𝛽𝛾𝜇(𝜇 + 𝛿 + 𝜃$)(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛼)
, 

1.3 Basic Reproductive Number (𝑅!) 
 
The most crucial threshold in every infectious disease is basic reproduction𝑅!. It can help predict 

if an infectious disease will spread through a population. Because our focus is on the population that 
spreads the infection, system (1) were considered, also with basic reproduction number obtained 
using the Next Generation Matrix [19]. 
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𝐹 =

⎝

⎛
0 0 −𝛽 H-

.
I

0 0 𝛽 H-
.
I

0 0 0 ⎠

⎞, 

𝜗 = R
−𝜇 0 0
0 −𝛾 − 𝜇 − 𝜃# 0
0 𝛾 −𝜇 − 𝛿 − 𝜃$

S, 

Because we find 𝐹𝜗0#, so first of all we have to find the value of 𝜗0# 
As we know that, 

𝜗0# =

⎣
⎢
⎢
⎢
⎢
⎡
𝜇 0 0

0
1

(𝛾 + 𝜇 + 𝜃#)
0

0
𝛾

(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)
1

(𝜇 + 𝛿 + 𝜃$)⎦
⎥
⎥
⎥
⎥
⎤

, 

now we find 𝐹𝜗0#, 

𝐹𝜗0# =

⎝

⎛
0 0-12

.(2&.&4$)(.&6&4%)
0-1

.(.&6&4%)

0 -12
.(2&.&4$)(.&6&4%)

-1
.(.&6&4%)

0 0 0 ⎠

⎞, 

thus, 

𝑅! =
𝜋𝛽𝛾

𝜇(𝛾 + 𝜇 + 𝜃#)(𝜇 + 𝛿 + 𝜃$)
, 

1.4 Stability Analysis of Equilibria 
 
We assume that, 

𝑔# = 𝜋 − 𝛽𝐼𝑆 − 𝜇𝑆	
𝑔$ = 𝛽𝐼𝑆 − 𝛾𝐿 − 𝜇𝐿 − 𝜃#𝐿			
𝑔7 = 𝛾𝐿 − 𝜇𝐼 − 𝛿𝐼 − 𝜃$𝐼	
𝑔8 = 𝜃#𝐿 + 𝜃$𝐼 − 𝜇𝐼% − 𝛼𝐼%

𝑔' = 𝛼𝐼% − 𝜇𝑅 ⎭
⎪
⎬

⎪
⎫

,																																					(1) 

Theorem 1: When𝑅! < 1, so the DFE points are LAS (Locally Asymptotically Stable) for system (1). 

Proof: 
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𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝑔#
𝜕𝑆

𝜕𝑔#
𝜕𝐿

𝜕𝑔#
𝜕𝐼

𝜕𝑔#
𝜕𝐼%

𝜕𝑔#
𝜕𝑅

𝜕𝑔$
𝜕𝑆

𝜕𝑔$
𝜕𝐿

𝜕𝑔$
𝜕𝐼

𝜕𝑔$
𝜕𝐼%

𝜕𝑔$
𝜕𝑅

𝜕𝑔7
𝜕𝑆

𝜕𝑔7
𝜕𝐿

𝜕𝑔7
𝜕𝐼

𝜕𝑔7
𝜕𝐼%

𝜕𝑔7
𝜕𝑅

𝜕𝑔8
𝜕𝑆

𝜕𝑔8
𝜕𝐿

𝜕��8
𝜕𝐼

𝜕𝑔8
𝜕𝐼%

𝜕𝑔8
𝜕𝑅

𝜕𝑔'
𝜕𝑆

𝜕𝑔'
𝜕𝐿

𝜕𝑔'
𝜕𝐼

𝜕𝑔'
𝜕𝐼%

𝜕𝑔'
𝜕𝑅 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

𝐽 =

⎝

⎜
⎛

𝛽𝐼 − 𝜇 0 −𝛽𝑆 0 0
𝛽𝐼 −(𝛾 + 𝜇 + 𝜃#) 𝛽𝑆 0 0
0 𝛾 −(𝜇 + 𝛿 + 𝜃$) 0 0
0 𝜃# 𝜃$ −(𝜇 + 𝛼) 0
0 0 0 𝛼 −𝜇⎠

⎟
⎞

, 

𝐽 `
𝜋
𝜇 , 0,0,0,0a =

⎝

⎜
⎜
⎜
⎜
⎛
−𝜇 0 −

𝛽𝜋
𝜇

0 0

𝛽𝐼 −(𝛾 + 𝜇 + 𝜃#)
𝛽𝜋
𝜇

0 0

0 𝛾 −(𝜇 + 𝛿 + 𝜃$) 0 0
0 𝜃# 𝜃$ −(𝜇 + 𝛼) 0
0 0 0 𝛼 −𝜇⎠

⎟
⎟
⎟
⎟
⎞

, 

|𝐽𝐸! − 𝜆𝐼| =

c

c
−𝜇 − 𝜆 0 −

𝛽𝜋
𝜇 0 0

𝛽𝐼 −(𝛾 + 𝜇 + 𝜃#) − 𝜆
𝛽𝜋
𝜇 0 0

0 𝛾 −(𝜇 + 𝛿 + 𝜃$) − 𝜆 0 0
0 𝜃# 𝜃$ −(𝜇 + 𝛼) − 𝜆 0
0 0 0 𝛼 −𝜇 − 𝜆

c

c

, 

𝜆# = −𝜇, 

𝜆$ = −𝜇, 

𝜆7 = −(𝜇 + 𝛼), 

𝐴 = e
−(𝛾 + 𝜇 + 𝜃#) − 𝜆

1-
.

𝛾 −(𝜇 + 𝛿 + 𝜃$) − 𝜆
e. 

Suppose, 
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𝑃# = −(𝛾 + 𝜇 + 𝜃#), 

𝑃$ =
1-
.

, 

𝑃7 = 𝛾, 

𝑃8 = −(𝜇 + 𝛿 + 𝜃$). 

So, above matrix 𝐴 becomes, 

𝐴 = g𝑃# − 𝜆 𝑃$
𝑃7 𝑃8 − 𝜆

g = 0, 

(𝑃# − 𝜆)(𝑃8 − 𝜆) − 𝑃$𝑃7 = 0, 

𝑃#𝑃8 − 𝜆(𝑃# + 𝑃8) + 𝜆$ − 𝑃$𝑃7 = 0, 

𝜆$ − 𝜆(𝑃# + 𝑃8) + 𝑃#𝑃8 − 𝑃$𝑃7 = 0, 

𝜆$ − 𝜆(𝑃# + 𝑃8) − (𝑃$𝑃7 − 𝑃#𝑃8)(1 − 𝑅!) > 0, 

Whenever𝑅! < 1, utilizing the Routh-Hurwitz criterion [20],21] the remaining roots of 𝜆$ −
𝜆(𝑃# + 𝑃8) − (𝑃$𝑃7 − 𝑃#𝑃8) = 0 must contain real negative aspects. Therefore, we deduce that 𝐸! 
is LAS for 𝑅! < 1. 
 
Theorem: 2 If 𝑅! > 1, then DEE point 𝐸∗ of model (1) is LAS. 

Proof: 

𝐽(𝑆∗, 𝐿∗, 𝐼∗, 𝐼%∗, 𝑅∗) =

⎝

⎜
⎛

𝛽𝐼∗ − 𝜇 0 −𝛽𝑆∗ 0 0
𝛽𝐼∗ −(𝛾 + 𝜇 + 𝜃#) 𝛽𝑆∗ 0 0
0 𝛾 −(𝜇 + 𝛿 + 𝜃$) 0 0
0 𝜃# 𝜃$ −(𝜇 + 𝛼) 0
0 0 0 𝛼 −𝜇⎠

⎟
⎞

, 

|𝐽𝐸∗ − 𝜆𝐼| = c
c

𝛽𝐼∗ − 𝜇 0 −𝛽𝑆∗ 0 0
𝛽𝐼∗ −(𝛾 + 𝜇 + 𝜃#) 𝛽𝑆∗ 0 0
0 𝛾 −(𝜇 + 𝛿 + 𝜃$) 0 0
0 𝜃# 𝜃$ −(𝜇 + 𝛼) 0
0 0 0 𝛼 −𝜇

c
c = 0, 
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|𝐽𝐸∗ − 𝜆𝐼| = (
(

(𝛽𝐼∗ − 𝜇) − 𝜆 0 −𝛽𝑆∗ 0 0
𝛽𝐼∗ −(𝛾 + 𝜇 + 𝜃") − 𝜆 𝛽𝑆∗ 0 0
0 𝛾 −(𝜇 + 𝛿 + 𝜃#) − 𝜆 0 0
0 𝜃" 𝜃# −(𝜇 + 𝛼) − 𝜆 0
0 0 0 𝛼 −𝜇 − 𝜆

(
( = 0, 

𝜆# = −𝜇, 

𝜆$ = −(𝜇 + 𝛼), 

|𝐽𝐸∗ − 𝜆𝐼| = i
(𝛽𝐼∗ − 𝜇) − 𝜆 0 −𝛽𝑆∗

𝛽𝐼∗ −(𝛾 + 𝜇 + 𝜃#) − 𝜆 𝛽𝑆∗
0 𝛾 −(𝜇 + 𝛿 + 𝜃$) − 𝜆

i = 0, 

by putting 

𝑐# = (𝛽𝐼∗ − 𝜇), 

𝑐$ = −𝛽𝑆∗, 

𝑐7 = 𝛽𝐼∗, 

𝑐8 = −(𝛾 + 𝜇 + 𝜃#) − 𝜆, 

𝑐' = 𝛽𝑆∗, 

𝑐9 = 𝛾, 

𝑐: = −(𝜇 + 𝛿 + 𝜃$), 

Now matrix |𝐽𝐸∗ − 𝜆𝐼| becomes. 

|𝐽𝐸∗ − 𝜆𝐼| = e
𝑐# − 𝜆 0 𝑐$
𝑐7 𝑐8 − 𝜆 𝑐'
0 𝑐9 𝑐: − 𝜆

e = 0, 

(𝑐# − 𝜆) g
𝑐8 − 𝜆 𝑐'
𝑐9 𝑐: − 𝜆

g + 𝑐$ g
𝑐7 𝑐8 − 𝜆
0 𝑐9

g = 0, 

(𝑐# − 𝜆)[(𝑐8 − 𝜆)(𝑐: − 𝜆) − 𝑐'𝑐9] + 𝑐$(𝑐7𝑐9) = 0, 

(𝑐# − 𝜆)[𝑐8𝑐: − 𝑐8𝜆 − 𝑐:𝜆 + 𝜆$] + 𝑐$𝑐7𝑐9 = 0, 

where, 
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𝐶 = 𝑐$𝑐7𝑐9, 

(𝑐# − 𝜆)[𝑐8𝑐: − 𝜆(𝑐8 + 𝑐:) + 𝜆$] + 𝐶 = 0, 

𝑐#𝑐8𝑐: − 𝑐#𝜆(𝑐8 + 𝑐:) + 𝑐#𝜆$ − 𝑐8𝑐:𝜆 + 𝜆$(𝑐8 + 𝑐:) − 𝜆7 + 𝐶 = 0, 

where,  

𝐺 = 𝑐#𝑐8𝑐:, 

−𝜆7 − 𝜆$(𝑐# + 𝑐8 + 𝑐:) + 𝜆(𝑐#𝑐8 + 𝑐#𝑐: − 𝑐8𝑐:) − 𝐺 − 𝐶 = 0,                                           (A) 

−𝜆7 − 𝜆$(𝑐# + 𝑐8 + 𝑐:) + 𝜆(𝑐#𝑐8 + 𝑐#𝑐: − 𝑐8𝑐:) − 𝐺 − 𝐶(𝑅! − 1) > 0, 

By, applying Routh-Hurwitz criterion [20,21] all the roots of equation (A) must have negative real 
parts if and only	𝑅! > 1.Therefore, the DEE point 𝐸∗ is LAS.  
 

 

Fig. 2. Numerical Simulations of ODE-45 at point DFE 

 

Fig. 3. Numerical Simulations of ODE-45 at point EE 
 
Figure 2 shows the numerical results of Lassa fever disease of system (1) using ODE-45. In this Fig 1.2 
graph shows the stability of DFE points and Figure 3 graph shows the stability of EE. The simulations 
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result of above figures shows the stability of DFE at 𝛽 = 0.05 and it shows the stability of endemic 
points at 𝛽 = 0.5 remaining values of parameters are given in table 1. 
 
1.5 Numerical Analysis of Lassa Fever 
 

In this division we created three different schemes for system (1) of Lassa fever disease. In 
subsection 1.5.1 and 1.5.2, we worked on forward Euler and RK-4 schemes which shows convergence 
on small step size and if we increased step size then these schemes shows divergent results. In 
subsection 1.5.3 we constructed NSFD scheme which give unconditionally convergent and does not 
depend on step size.   
 
1.5.1 Forward Euler’s Scheme: 
 
We developed Forward Euler scheme of Lassa fever of mathematical model for system (1).  

𝑠;&# = 𝑠; − ℎ(𝜋 − 𝛽𝑖;𝑠; − 𝜇𝑠;)
𝑙;&# = 𝑙; + ℎ(𝛽𝑖;𝑠; − (𝛾 − 𝜇 − 𝜃#)𝑙;)
𝑖;&# = 𝑖; + ℎ[𝛾𝑙; − (𝜇 + 𝛿 + 𝜃$)𝑖;]

𝑖%;&# = 𝑖%; + ℎ[𝜃#𝑙; + 𝜃$𝑖; − (𝜇 + 𝛼)𝑖%;]
𝑟;&# = 𝑟; + ℎ[𝛼𝑖%; − 𝜇𝑟;] ⎭

⎪
⎬

⎪
⎫

,																								(2) 

After the solution of numerical work through Euler’s structure give us the positivity results. When the 
step size rises, then the solution of Euler’s structure does not remains stable. Thus, we conclude that 
the solution of Euler’s structure is conditionally positive converge for all finite step size. 
 

 

Fig. 3. Numerical Simulations of Euler’s Scheme at point DFE 

Numerical results in Fig 3 for Lassa fever disease are obtained from Euler schemes for DFE points 
which shows the conditionally convergence result at specific step size, as shown in graph (a) ℎ =
0.01, (b) ℎ = 0.001 and (c) ℎ = 0.0001, and when we increase step size at (d) ℎ = 10 it becomes 
diverged. 
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Fig. 4. Numerical Simulations of Euler’s Scheme at point EE 
 

In Fig 4 Euler scheme for endemic points of Lassa fever disease for system (1). The numerical results 
are given in Fig 4 graph (a), (b) and (c) shows the convergence results at ℎ = 0.01, 0.001 and ℎ =
0.0001 and (d) show the divergent of endemic points at ℎ = 	10.  
 
1.5.2 Fourth Order Runge-Kutta Scheme (𝑅𝐾 − 4): 

We create 𝑅𝐾 − 4 scheme for the mathematical modeling of Lassa fever for system (1), 

𝑠;&# = 𝑠; +
1
6
(𝑝# + 2𝑝$ + 2𝑝7 + 𝑝8)

𝑙;&# = 𝑙; +
1
6
(𝑡# + 2𝑡$ + 2𝑡7 + 𝑡8)

𝑖;&# = 𝑖; +
1
6
(𝑞# + 2𝑞$ + 2𝑞7 + 𝑞8)

𝑖%;&# = 𝑖%; +
1
6
(𝑣# + 2𝑣$ + 2𝑣7 + 𝑣8)

𝑟;&# = 𝑟; +
1
6
(𝑞# + 2𝑞$ + 2𝑞7 + 𝑞8)⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

,																						(3) 

The numerical results obtained from this scheme are given below, 
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Fig. 5. Numerical Simulations of 𝑅𝐾 − 4 Scheme at point DFE 
 

The above Fig 5 the numerical simulations of system (1) through 𝑅𝐾 − 4 scheme for DFE points, 
shows the conditionally convergent results at step size ℎ = 0.01, 0.001 and 0.0001 respectively in 
(a), (b) and (c). As we increase the step size ℎ = 10 in (d) this scheme becomes diverge. 

 

Fig. 6. Numerical Simulations of 𝑅𝐾 − 4 Scheme at point EE 
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The above Fig 6 the numerical simulations of system (1) through 𝑅𝐾 − 4 scheme for EE points, 
show the conditionally convergent results at step size ℎ = 0.01, 0.001, and 0.0001 respectively in 
(a), (b), and (c), as shown in above simulations results. As we increase values of ℎ = 10 in (d) scheme 
becomes diverge. 
 
 1.5.3 Non-Standard Finite Difference (NSFD) Scheme 
 

In subsection 1.5.3 we constructed the most important unconditionally scheme for system (1), 
which is called non-standard finite difference scheme (NSFD). The NSFD method was first assembled 
by Mickens which is much better scheme from other two scheme like Euler and 𝑅𝐾 − 4 scheme. For 
construction of NSFD scheme we use (𝑠;, 𝑙;, 𝑖;, 𝑖%;, 𝑟;) as numerical approximations of 
𝑆(𝑡), 𝑙(𝑡), 𝑖(𝑡), 𝑟(𝑡), 𝑖%(𝑡), at 𝑡 = 𝑛ℎ and here ℎ is called step size of this scheme. The standard finite 
difference scheme are dependent on step size and it gives stability at some specific step size but the 
standard finite difference scheme are step size independent and show convergence at all finite step 
size at both DFE and EE points. So that we say that the NSFD scheme is most convenient scheme for 
the stability analysis of epidemic flow chart of Lassa fever virus [22-29].  

 

𝑠;&# =
𝑠; + ℎ𝜋

(1 + ℎ𝛽𝑖; + ℎ𝜇)

𝑙;&# =
𝑙; + ℎ𝛽𝑖;𝑠;

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)

𝑖;&# =
ℎ𝛾𝑙; + 𝑖;

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)

𝑖%;&# =
𝑖%; + ℎ𝜃#𝑙; + ℎ𝜃$𝑖;

(1 + ℎ𝜇 + ℎ𝛼)

𝑟;&# =
𝑟; + ℎ𝛼𝑖%;

(1 + ℎ𝜇) ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

,																										(4) 

 

Fig. 7. Numerical Simulations of NSFD Scheme at point DFE 
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In Fig 7 the numerical results obtained through most valuable NSFD scheme for DFE points. The 
numerical simulations show unconditionally convergence as shown in Fig 7 (a), (b), (c) and (d). This 
simulations results conclude that NSFD scheme always show positive results at all finite step sizes. 
 

 
Fig. 8. Numerical Simulations of NSFD Scheme at point EE 

 
In Fig 8 numerical simulations for system (1) shows the convergence results for endemic points 
through NSFD schemes. The graph (a), (b), (c) and (d) show the positive results for different step size 
which shows that the NSFD scheme is unconditionally convergent for endemic points. 
 
1.5.4 Stability analysis of NSFD scheme 

        In this division we find the steadiness of NSFD method of system (1). Let us consider  

𝐹 = 𝑠;&# =
𝑠; + ℎ𝜋

(1 + ℎ𝛽𝑖; + ℎ𝜇)

𝐺 = 𝑙;&# =
𝑙; + ℎ𝛽𝑖;𝑠;

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)

𝐻 = 𝑖;&# =
ℎ𝛾𝑙; + 𝑖;

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)

𝐼 = 𝑖%;&# =
𝑖%; + ℎ𝜃#𝑙; + ℎ𝜃$𝑖;

(1 + ℎ𝜇 + ℎ𝛼)

𝐾 = 𝑟;&# =
𝑟; + ℎ𝛼𝑖%;

(1 + ℎ𝜇) ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

,																										(5) 

Theorem 3: 
              If 𝑅! < 1 then DFE points of system (1) for NSFD scheme is LAS. 

Proof: 
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Let’s we take Jacobean matrix of order	5𝑥5, 

𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜕𝐹
𝜕𝑠

𝜕𝐹
𝜕𝑙

𝜕𝐹
𝜕𝑖

𝜕𝐹
𝜕𝑖%

𝜕𝐹
𝜕𝑟

𝜕𝐺
𝜕𝑠

𝜕𝐺
𝜕𝑙

𝜕𝐺
𝜕𝑖

𝜕𝐺
𝜕𝑖%

𝜕𝐺
𝜕𝑟

𝜕𝐻
𝜕𝑠

𝜕𝐻
𝜕𝑙

𝜕𝐻
𝜕𝑖

𝜕𝐻
𝜕𝑖%

𝜕𝐻
𝜕𝑟

𝜕𝐼
𝜕𝑠

𝜕𝐼
𝜕𝑙

𝜕𝐼
𝜕𝑖

𝜕𝐼
𝜕𝑖%

𝜕𝐼
𝜕𝑟

𝜕𝐾
𝜕𝑠

𝜕𝐾
𝜕𝑙

𝜕𝐾
𝜕𝑖

𝜕𝐾
𝜕𝑖%

𝜕𝐾
𝜕𝑟⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1 + ℎ𝛽𝑖 + ℎ𝜇

0 0 0 0

ℎ𝛽𝑖
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

1
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

ℎ𝛽𝑠
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
0 0

0
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃$

1 + ℎ𝜇 + ℎ𝛼
1

(1 + ℎ𝜇 + ℎ𝛼) 0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

𝐽(𝐸!) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1 + ℎ𝜇 0 0 0 0

0
1

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
ℎ𝛽𝑠

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
0 0

0
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃$

1 + ℎ𝜇 + ℎ𝛼
1

(1 + ℎ𝜇 + ℎ𝛼)
0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 
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𝐽(𝐸$ − 𝜆)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1 + ℎ𝜇

− 𝜆 0 0 0 0

0
1

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃"
− 𝜆

ℎ𝛽𝑠
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃"

0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃#
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃#
− 𝜆 0 0

0
ℎ𝜃"

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
1

(1 + ℎ𝜇 + ℎ𝛼) − 𝜆 0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇
− 𝜆⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

𝜆# =
1

1 + ℎ𝜇 > 0, 

𝜆$ =
1

1 + ℎ𝜇 > 0, 

𝐽(𝐸! − 𝜆) =

⎝

⎜
⎜
⎜
⎛

1
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

− 𝜆
ℎ𝛽𝑠

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
0

ℎ𝛾
1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$

1
1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$

− 𝜆 0

ℎ𝜃#
1 + ℎ𝜇 + ℎ𝛼

ℎ𝜃$
1 + ℎ𝜇 + ℎ𝛼

1
(1 + ℎ𝜇 + ℎ𝛼) − 𝜆⎠

⎟
⎟
⎟
⎞
, 

𝜆7 =
1

(1 + ℎ𝜇 + ℎ𝛼) > 0, 

Remaining eigen values are evaluated numerically and largest eigen values that is spectral radius 
graphs is plotted is given below. 

 

Fig. 9. Largest Eigen values of the system at point DFE 
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The figure 9 show that the largest eigen values is less than one at point DFE. 

Theorem: 4 If 𝑅! > 1, then DEE points 𝐸∗ of the discrete NSFD expression (1) is LAS ∀ ℎ > 0.  

Proof:  In the similar way as in Theorem 3, the Jacobean matrix can be obtained as 

𝐽 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1 + ℎ𝛽𝑖 + ℎ𝜇

0 0 0 0

ℎ𝛽𝑖
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

1
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

ℎ𝛽𝑠
1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#

0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
0 0

0
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃$

1 + ℎ𝜇 + ℎ𝛼
1

(1 + ℎ𝜇 + ℎ𝛼) 0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

By putting DEE point 𝐸∗, we get 
𝐽(𝐸∗)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1 + ℎ𝛽𝑖∗ + ℎ𝜇

0 0 0 0

ℎ𝛽𝑖∗

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
1

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
ℎ𝛽𝑠∗

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#
0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃$
0 0

0
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃$

1 + ℎ𝜇 + ℎ𝛼
1

(1 + ℎ𝜇 + ℎ𝛼) 0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

, 

|𝐽𝐸∗ − 𝜆𝐼| =

(

(

(

(

1
1 + ℎ𝛽𝑖∗ + ℎ𝜇 − 𝜆 0 0 0 0

ℎ𝛽𝑖∗

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃"
1

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃"
− 𝜆

ℎ𝛽𝑠∗

1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃"
0 0

0
ℎ𝛾

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃#
1

1 + ℎ𝛾 + ℎ𝛿 + ℎ𝜃#
− 𝜆 0 0

0
ℎ𝜃"

1 + ℎ𝜇 + ℎ𝛼
ℎ𝜃#

1 + ℎ𝜇 + ℎ𝛼
1

51+ℎ𝜇+ℎ𝛼6 − 𝜆 0

0 0 0
ℎ𝛼

1 + ℎ𝜇
1

1 + ℎ𝜇 − 𝜆
(

(

(

(

= 0, 

𝜆# =
1

1 + ℎ𝜇 > 0, 

𝜆$ =
1

(1 + ℎ𝜇 + ℎ𝛼) > 0, 
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𝜆7 =
1

1 + ℎ𝛽𝑖∗ + ℎ𝜇 > 0, 

Remaining eigen values are evaluated numerically and largest eigen values that is spectral radius 
graphs is plotted is given below. 

 

Fig. 10. Largest Eigen values of the system at point EE 
 

The figure 10 show that the largest eigen values is less than one at point EE. 
 
1.5.5 Positivity 
 
The most significant physical characteristics of sub-population (𝑆, 𝐿, 𝐼, 𝐼𝑠, 𝑅) used in the 
compartmental epidemic flow chart is positivity. The implicit numerical integration scheme and 
mathematical induction concept are used to study and ensure this fact. 
Theorem:5 Let the state variables 𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐼%(𝑡) and 𝑅(𝑡) involved in the scheme are positive 
at 𝑡 = 0; furthermore, if Additionally, every parameter is positive, then 𝑆;&# ≥ 0, 𝐿;&# ≥ 0, 𝐼;&# ≥
0, 𝐼%;&# ≥ 0  and 𝑅;&# ≥ 0. 
 
Proof: 
Using the mathematical induction principle and taking into consideration equation (4), we proceed 
on as follows:	

𝑆;&# =
𝑆; + ℎ𝜋

(1 + ℎ𝛽𝐼; + ℎ𝜇), 

𝐿;&# =
𝐿; + ℎ𝛽𝐼;𝑆;

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)
, 

𝐼;&# =
ℎ𝛾𝐿; + 𝐼;

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)
, 

𝐼%;&# =
𝐼%; + ℎ𝜃#𝐿; + ℎ𝜃$𝐼;

(1 + ℎ𝜇 + ℎ𝛼) , 
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𝑅;&# =
𝑅; + ℎ𝛼𝐼%;

(1 + ℎ𝜇)  

First, we Substitute 𝑛 = 0 in above equations and reached. 

𝑆# =
𝑆! + ℎ𝜋

(1 + ℎ𝛽𝐼! + ℎ𝜇) ≥ 0																													(6) 

Similarly, 

𝐿# =
𝐿! + ℎ𝛽𝐼!𝑆!

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)
≥ 0

𝐼# =
ℎ𝛾𝐿! + 𝐼!

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)
≥ 0

𝐼%# =
𝐼%! + ℎ𝜃#𝐿! + ℎ𝜃$𝐼!

(1 + ℎ𝜇 + ℎ𝛼) ≥ 0

𝑅# =
𝑅! + ℎ𝛼𝐼%!

(1 + ℎ𝜇)
≥ 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

,																								(8) 

For  𝑛 = 1, we arrive at. 

𝑆$ =
𝑆# + ℎ𝜋

(1 + ℎ𝛽𝐼# + ℎ𝜇) ≥ 0																														(9) 

Similarly, 

𝐿$ =
𝐿# + ℎ𝛽𝐼#𝑆#

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)
≥ 0

𝐼$ =
ℎ𝛾𝐿# + 𝐼#

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)
≥ 0

𝐼%$ =
𝐼%# + ℎ𝜃#𝐿# + ℎ𝜃$𝐼#

(1 + ℎ𝜇 + ℎ𝛼) ≥ 0

𝑅$ =
𝑅# + ℎ𝛼𝐼%#

(1 + ℎ𝜇)
≥ 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

																						(10) 

Moreover, let us assume that the above system (10) ensures the positive property for the values 
of	𝑛 = 2,3,4, … , 𝑛 − 1, i.e., 𝑆; ≥ 0, 𝐿; ≥ 0, 𝐼; ≥ 0, 𝐼%; ≥ 0  and 𝑅; ≥ 0 for 𝑛 = 2,3,4, … , 𝑛 − 1 and 
sub-population (𝑆, 𝐿, 𝐼, 𝐼𝑠, 𝑅). 
Now, for 𝑛 ∈ 𝑍, 

𝑆;&# =
𝑆; + ℎ𝜋

(1 + ℎ𝛽𝐼; + ℎ𝜇) ≥ 0,																																			(11) 

Similarly, 
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𝐿;&# =
𝐿; + ℎ𝛽𝐼;𝑆;

(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#)
≥ 0

𝐼;&# =
ℎ𝛾𝐿; + 𝐼;

(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)
≥ 0

𝐼%;&# =
𝐼%; + ℎ𝜃#𝐿; + ℎ𝜃$𝐼;

(1 + ℎ𝜇 + ℎ𝛼) ≥ 0

𝑅;&# =
𝑅; + ℎ𝛼𝐼%;

(1 + ℎ𝜇) ≥ 0 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

,																							(12) 

Thus, proposed approach confirms the positive for the state variables 𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝐼%(𝑡) and 𝑅(𝑡) 

∀	𝑛 ∈ 𝑍%. 

1.5.6 Boundedness 

Theorem:6 Suppose 𝑆!, 𝐿!, 𝐼!, 𝐼%! and 𝑅! are finite such that 𝑆! + 𝐿! + 𝐼! + 𝐼%! + 𝑅! ≤ 1. Also 
𝜋, 𝛽, 𝛾, 𝜃#, 𝜃$ and 𝛼 are all conclusive in flow chart. Then discretized state variables, 
𝑆;&#, 𝐿;&#, 𝐼;&#, 𝐼%;&#  and 𝑅;&# are bounded by recrossing defined real constant 𝑑;&# such that 
𝑆;&#, 𝐿;&#, 𝐼;&#, 𝐼%;&#  and 𝑅;&# < 𝑑;&# for all 𝑛 ∈ 𝑍& where 𝑑;&# = 4𝑑; + ℎ𝜋 + 𝐼;ℎ(𝛽𝑆; + 𝜃$) +
𝐿;ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%; and 𝑑;&# = 4 + ℎ𝜋 + 𝐼!ℎ(𝛽𝑆! + 𝜃$) + 𝐿!ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%!. 
Proof: Examining the equations for the sub-population (𝑆, 𝐿, 𝐼, 𝐼𝑠, 𝑅) in the implicit numerical 
integration method. 

𝑆;&#(1 + ℎ𝛽𝐼; + ℎ𝜇) = 𝑆; + ℎ𝜋																												(13) 

𝐿;&#(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#) = 𝐿; + ℎ𝛽𝐼;𝑆;													(14) 

𝐼;&#(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$) = ℎ𝛾𝐿; + 𝐼;																		(15) 

𝐼%;&#(1 + ℎ𝜇 + ℎ𝛼) = 𝐼%; + ℎ𝜃#𝐿; + ℎ𝜃$𝐼;												(16) 

𝑅;&#(1 + ℎ𝜇) = 𝑅; + ℎ𝛼𝐼%;																																							(17) 

By adding all above the equations. 
 
⟹ (𝑆;&# + 𝐿;&# + 𝐼;&# + 𝐼%;&# + 𝑅;&#)(1 + ℎ𝜇) + 𝑆;&#ℎ𝛽𝐼; + 𝐿;&#ℎ(𝛾 + 𝜃#) + 𝐼;&#ℎ(𝛿 + 𝜃$)

+ 𝐼%;&#ℎ𝛼

= (𝑆; + 𝐿; + 𝐼; + 𝐼%; + 𝑅;) + ℎ𝜋 + 𝐼;ℎ(𝛽𝑆; + 𝜃$) + 𝐿;ℎ(𝛾 + 𝜃#)

+ ℎ𝛼𝐼%;																																																																																																										(18) 

By substituting 𝑛 = 0, in above equation (13). 
 

⟹ (𝑆# + 𝐿# + 𝐼# + 𝐼%# + 𝑅#)(1 + ℎ𝜇) + 𝑆#ℎ𝛽𝐼! + 𝐿#ℎ(𝛾 + 𝜃#) + 𝐼#ℎ(𝛿 + 𝜃$) + 𝐼%#ℎ𝛼

= (𝑆! + 𝐿! + 𝐼! + 𝐼%! + 𝑅!) + ℎ𝜋 + 𝐼!ℎ(𝛽𝑆! + 𝜃$) + 𝐿!ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%! 
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⟹ (𝑆# + 𝐿# + 𝐼# + 𝐼%# + 𝑅#)(1 + ℎ𝜇) + 𝑆#ℎ𝛽𝐼! + 𝐿#ℎ(𝛾 + 𝜃#) + 𝐼#ℎ(𝛿 + 𝜃$) + 𝐼%#ℎ𝛼

< 5 + ℎ𝜋 + 𝐼!ℎ(𝛽𝑆! + 𝜃$) + 𝐿!ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%! = 𝑑# 

⟹ (𝑆# + 𝐿# + 𝐼# + 𝐼%# + 𝑅#)(1 + ℎ𝜇) + 𝑆#ℎ𝛽𝐼! + 𝐿#ℎ(𝛾 + 𝜃#) + 𝐼#ℎ(𝛿 + 𝜃$) + 𝐼%#ℎ𝛼 ≤ 𝑑# 

𝑆#(1 + ℎ𝜇 + ℎ𝛽𝐼!) + 𝐿#(1 + ℎ𝜇 + ℎ𝛾 + ℎ𝜃#) + 𝐼#(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$) + 𝐼%#(1 + ℎ𝜇 + ℎ𝛼)

+ 𝑅#(1 + ℎ𝜇) ≤ 𝑑# 

⟹ 𝑆# < 𝑑# 

𝐿# < 𝑑# 

𝐼# < 𝑑# 

𝐼%# < 𝑑# 

𝑅# < 𝑑# 

By substituting 𝑛 = 1, in above equation (13). 
⟹ (𝑆$ + 𝐿$ + 𝐼$ + 𝐼%$ + 𝑅$)(1 + ℎ𝜇) + 𝑆$ℎ𝛽𝐼# + 𝐿$ℎ(𝛾 + 𝜃#) + 𝐼$ℎ(𝛿 + 𝜃$) + 𝐼%$ℎ𝛼

= (𝑆# + 𝐿# + 𝐼# + 𝐼%# + 𝑅#) + ℎ𝜋 + 𝐼#ℎ(𝛽𝑆# + 𝜃$) + 𝐿#ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%# 

⟹ (𝑆$ + 𝐿$ + 𝐼$ + 𝐼%$ + 𝑅$)(1 + ℎ𝜇) + 𝑆$ℎ𝛽𝐼# + 𝐿$ℎ(𝛾 + 𝜃#) + 𝐼$ℎ(𝛿 + 𝜃$) + 𝐼%$ℎ𝛼

< 5𝑑# + ℎ𝜋 + 𝐼#ℎ(𝛽𝑆# + 𝜃$) + 𝐿#ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%# = 𝑑# 

⟹ (𝑆$ + 𝐿$ + 𝐼$ + 𝐼%$ + 𝑅$)(1 + ℎ𝜇) + 𝑆$ℎ𝛽𝐼# + 𝐿$ℎ(𝛾 + 𝜃#) + 𝐼$ℎ(𝛿 + 𝜃$) + 𝐼%$ℎ𝛼 ≤ 𝑑# 

⟹ 𝑆$(1 + ℎ𝜇 + ℎ𝛽𝐼#) + 𝐿$(1 + ℎ𝜇 + ℎ𝛾 + ℎ𝜃#) + 𝐼$(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$) + 𝐼%$(1 + ℎ𝜇 + ℎ𝛼)

+ 𝑅$(1 + ℎ𝜇) ≤ 𝑑# 

⟹ 𝑆$ < 𝑑# 

𝐿$ < 𝑑# 

𝐼$ < 𝑑# 

𝐼%$ < 𝑑# 

𝑅$ < 𝑑# 

Now, 
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⟹ 𝑆;&#(1 + ℎ𝛽𝐼; + ℎ𝜇) + 𝐿;&#(1 + ℎ𝛾 + ℎ𝜃# + ℎ𝜇) + 𝐼;&#(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$)

+ 𝐼%;&#(1 + ℎ𝜇 + ℎ𝛼) + 𝑅;&#(1 + ℎ𝜇)

< 5𝑑; + ℎ𝜋 + 𝐼;ℎ(𝛽𝑆; + 𝜃$) + 𝐿;ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%; = 𝑑;&# 

𝑆;&# < 𝑑;&#, 𝐿;&# < 𝑑;&#, 𝐼;&# < 𝑑;&#, 𝐼%;&# < 𝑑;&# and 𝑅;&# < 𝑑;&#, where 𝑑;&# = 4𝑑; +

ℎ𝜋 + 𝐼;ℎ(𝛽𝑆; + 𝜃$) + 𝐿;ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%; = 4 + ℎ𝜋 + 𝐼!ℎ(𝛽𝑆! + 𝜃$) + 𝐿!ℎ(𝛾 + 𝜃#) + ℎ𝛼𝐼%!. 

Hence, 𝑆;&#, 𝐿;&#, 𝐼;&#, 𝐼%;&# and 𝑅;&# are bordered by ℝ	𝑑;&# ∀	𝑛 ∈ 𝑍%. 

1.5.7 Consistency analysis 
 
In subsection analyzes the consistency of an implicit numerical integration strategy using Taylor's 
series expansion. Firstly, choose expression (13) of the implicit numerical integration scheme and 
apply Taylor’s series expansion of	𝑆;&#. 

𝑆;&# = 𝑆; + ℎ
𝑑𝑆
𝑑𝑡
+
ℎ$

2!
𝑑2𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑆
𝑑𝑡3

+⋯ 

In the following equation  
𝑆;&#(1 + ℎ𝛽𝐼; + ℎ𝜇) = 𝑆; + ℎ𝜋 

�𝑆; + ℎ
𝑑𝑆
𝑑𝑡
+
ℎ$

2!
𝑑2𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝛽𝐼; + ℎ𝜇) = 𝑆; + ℎ𝜋 

𝑆; + 𝑆;ℎ𝛽𝐼; + 𝑆;ℎ𝜇 + ℎ
𝑑𝑆
𝑑𝑡
+ ℎ$𝛽𝐼;

𝑑𝑆
𝑑𝑡
+ ℎ$𝜇

𝑑𝑆
𝑑𝑡
+ �

ℎ$

2!
𝑑2𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝛽𝐼; + ℎ𝜇)

= 𝑆; + ℎ𝜋 

𝑆;ℎ𝛽𝐼; + 𝑆;ℎ𝜇 + ℎ
𝑑𝑆
𝑑𝑡
+ ℎ$𝛽𝐼;

𝑑𝑆
𝑑𝑡
+ ℎ$𝜇

𝑑𝑆
𝑑𝑡
+ �

ℎ$

2!
𝑑2𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝛽𝐼; + ℎ𝜇) = ℎ𝜋 

ℎ R𝑆;𝛽𝐼; + 𝑆;𝜇 +
𝑑𝑆
𝑑𝑡
+ ℎ𝛽𝐼;

𝑑𝑆
𝑑𝑡
+ ℎ𝜇

𝑑𝑆
𝑑𝑡
+ �

ℎ
2!
𝑑2𝑆
𝑑𝑡2

+
ℎ$

3!
𝑑3𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝛽𝐼; + ℎ𝜇)S = ℎ𝜋 

𝑆;𝛽𝐼; + 𝑆;𝜇 +
𝑑𝑆
𝑑𝑡
+ ℎ𝛽𝐼;

𝑑𝑆
𝑑𝑡
+ ℎ𝜇

𝑑𝑆
𝑑𝑡
+ �

ℎ
2!
𝑑2𝑆
𝑑𝑡2

+
ℎ$

3!
𝑑3𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝛽𝐼; + ℎ𝜇) = 𝜋 

Apply ℎ → 0, 

𝑆;𝛽𝐼; + 𝑆;𝜇 +
𝑑𝑆
𝑑𝑡
= 𝜋 
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𝑑𝑆
𝑑𝑡
= 𝜋 − 𝑆;(𝛽𝐼; + 𝜇)																																									(19) 

Now, for equation (14) apply Taylor’s series expansion. 

𝐿;&# = 𝐿; + ℎ
𝑑𝐿
𝑑𝑡
+
ℎ$

2!
𝑑2𝐿
𝑑𝑡2

+
ℎ7

3!
𝑑3𝐿
𝑑𝑡3

+⋯ 

𝐿;&#(1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#) = 𝐿; + ℎ𝛽𝐼;𝑆; 

�𝐿; + ℎ
𝑑𝐿
𝑑𝑡
+
ℎ$

2!
𝑑2𝐿
𝑑𝑡2

+
ℎ7

3!
𝑑3

𝑑𝑡3
+⋯� (1 + ℎ𝛾 + ℎ𝜇 + ℎ𝜃#) = 𝐿; + ℎ𝛽𝐼;𝑆; 

By applying ℎ → 0, we get the following expression. 

𝑑𝐿
𝑑𝑡
= 𝛽𝐼;𝑆; − 𝐿;(𝛾 + 𝜇 + 𝜃#)																															(20) 

We choose expression (15), 

𝐼;&# = 𝐼; + ℎ
𝑑𝐼
𝑑𝑡
+
ℎ$

2!
𝑑2𝐼
𝑑𝑡2

+
ℎ7

3!
𝑑3𝐼
𝑑𝑡3

+⋯ 

𝐼;&#(1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$) = ℎ𝛾𝐿; + 𝐼; 

�𝐼; + ℎ
𝑑𝐼
𝑑𝑡
+
ℎ$

2!
𝑑2𝐼
𝑑𝑡2

+
ℎ7

3!
𝑑3𝐼
𝑑𝑡3

+⋯� (1 + ℎ𝜇 + ℎ𝛿 + ℎ𝜃$) = ℎ𝛾𝐿; + 𝐼; 

Apply ℎ → 0, and after some calculation we get. 

𝑑𝐼
𝑑𝑡
= 𝛾𝐿; − 𝐼;(𝜇 + 𝛿 + 𝜃$)																																			(21) 

Pick the equation (16), then apply the Taylor’s series expansion. 

𝐼(;&# = 𝐼(; + ℎ
𝑑𝐼𝑆
𝑑𝑡
+
ℎ$

2!
𝑑2𝐼𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝐼𝑆
𝑑𝑡3

+⋯ 

𝐼%;&#(1 + ℎ𝜇 + ℎ𝛼) = 𝐼%; + ℎ𝜃#𝐿; + ℎ𝜃$𝐼; 

�𝐼(; + ℎ
𝑑𝐼𝑆
𝑑𝑡
+
ℎ$

2!
𝑑2𝐼𝑆
𝑑𝑡2

+
ℎ7

3!
𝑑3𝐼𝑆
𝑑𝑡3

+⋯� (1 + ℎ𝜇 + ℎ𝛼) = 𝐼%; + ℎ𝜃#𝐿; + ℎ𝜃$𝐼; 

Put limit ℎ → 0, we get the result. 
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𝑑𝐼𝑆
𝑑𝑡

= ℎ𝜃#𝐿; + ℎ𝜃$𝐼; − 𝐼(;(𝜇 + 𝛼)																											(22) 

From equation (17), 

𝑅;&# = 𝑅; + ℎ
𝑑𝑅
𝑑𝑡
+
ℎ$

2!
𝑑2𝑅
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑅
𝑑𝑡3

+⋯ 

𝑅;&#(1 + ℎ𝜇) = 𝑅; + ℎ𝛼𝐼%; 

�𝑅; + ℎ
𝑑𝑅
𝑑𝑡
+
ℎ$

2!
𝑑2𝑅
𝑑𝑡2

+
ℎ7

3!
𝑑3𝑅
𝑑𝑡3

+⋯� (1 + ℎ𝜇) = 𝑅; + ℎ𝛼𝐼%; 

By applying ℎ → 0, we reached. 

𝑑𝑅
𝑑𝑡
= 𝛼𝐼%; − 𝑅;ℎ𝜇																																										(23) 

1.5.8 Comparison analysis of SFD and NSFD schemes 

The comparison analysis of both numerical schemes are presented in this section, which shows the 
reliability of these schemes.  
 

 

Fig. 11. Numerical Simulations of NSFD Scheme at point DFE 
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Fig. 12. Numerical simulations of NSFD Scheme at point EE 
 
Figure 12 Numerical results represents the comparison of SFD and NSFD schemes. In Fig 1.9, graph 
(a) and (b) gives the simulations of DFE point and graph (c) and (d) give the simulations for EE point. 
 
2. Conclusion             
 

A mathematical model for Lassa fever disease are examined in this paper. A formulated 
mathematical model consist of five variables which are expressed in differential equations. We find 
disease free and endemic points by using these differential equations, basic reproductive value is 
used to find the stability of mathematical model of Lassa fever. Furthermore, we use two different 
numerical schemes such as SFD and NSFD scheme to numerically analyze the flow chart of Lassa fever 
virus. We see that in SFD scheme shows conditionally convergent for both endemic and disease free 
equilibrium points. After that we constructed the most frequent scheme for numerically analyze the 
Lassa fever disease model which is known as NSFD scheme. This scheme gives us unconditionally 
convergent results for both DFE and EE points. It means that it does not depend on step, it remain 
stable at all finite step size and give convergence result. Numerical simulations are formed for all 
above schemes to validate the theoretical and mathematical work. 
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