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visualization of type-2 neutrosophic B-spline surface (T2NBsS) models remain
computationally challenging due to their complex structure. This research addresses
the problem of simplifying T2NBsS interpolation models for real-world applications,
particularly in the context of Kenyir Lake bathymetry data. The main objective is to
visualize a reduction technique that transforms T2NBsS into a type-1 neutrosophic B-
spline surface (TINBsS) form without significantly losing the accuracy of the
information. To achieve this, we propose an a-slice based vertical interval
approximation strategy that slices the secondary membership structure at selected a
levels to extract interval values of the type-1 triangular neutrosophic set. This method

Keywords: bypasses iterative centroid computation and enables efficient surface reconstruction
Type-2 neutrosophic set; B-spline surface  While preserving essential neutrosophic characteristics. The results confirm that the
interpolation; type-reduction; a-slice proposed method effectively bridges the gap between theoretical modeling and
approximation; Bathymetry Modeling; practical geospatial interpretation. This framework offers a valuable tool for
Kenyir Lake; interval representation; researchers and engineers dealing with uncertain spatial datasets in environmental
secondary membership function and hydrographic domains.

1. Introduction

Accurate modeling of bathymetric surfaces is crucial in environmental analysis, reservoir
management, and hydrographic applications. Bathymetry data often contain uncertainty due to
measurement errors, sparse sampling, and environmental fluctuations. These uncertainties pose
challenges for traditional modeling techniques such as deterministic interpolation or type-1 fuzzy
systems, which lack the ability to represent complex or layered uncertainty [1,2].

To overcome these limitations, type-2 fuzzy sets (T2FS) were introduced as an extension of type-
1 fuzzy sets (T1FS), where the membership grades themselves are fuzzy [3]. This approach enables
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better handling of uncertainties in input information [4]. The practical use of T2FS was further
developed by Mendel and Karnik, who proposed type-reduction algorithms such as the Karnik—
Mendel (KM) algorithm [4]. In parallel, the concept of neutrosophic sets was introduced by
Smarandache, allowing representation of truth, indeterminacy, and falsity independently [5]. Type-
2 neutrosophic sets (T2NS), which combine the strengths of T2FS and neutrosophic logic, have since
been proposed to model more complex forms of uncertainty [6].

In surface modeling, B-spline surfaces are widely used due to their continuity, flexibility, and local
control over surface shape. When combined with T2NS theory, a type-2 neutrosophic B-spline
surface (T2NBsS) offers a powerful tool to interpolate uncertain spatial data while preserving multi-
dimensional uncertainty characteristics [9,10]. However, practical use of T2NBsS models is hindered
by the computational burden of processing secondary membership structures and the difficulty in
interpreting high-dimensional uncertainty in real applications [6,10].

To address this issue, researchers have proposed approximation strategies using a-cuts on the
secondary membership functions. This method creates vertical slices that capture bounded
uncertainty intervals without relying on iterative centroid computations [7,8]. These a-slice
strategies provide an efficient and interpretable way to simplify general Type-2 fuzzy models [6].

This paper proposes an aBy-slice based type-reduction framework for converting a T2NBsS into
a type-1 neutrosophic B-spline surface (TINBsS). The method simplifies the secondary membership
structure into interval-valued representations based on selected « levels. A case study on Kenyir Lake
bathymetry is conducted to demonstrate the effectiveness of this approach. The results show that
the reduced TINBsS closely approximates the original T2NBsS with improved computational
efficiency and interpretability.

The remainder of this paper is organized as follows. Section 2 provides a review of related work
on fuzzy and neutrosophic interpolation models and type-reduction techniques. Section 3 introduces
the mathematical formulation of the type-2 neutrosophic B-spline surface interpolation model.
Section 4 presents the proposed aBy-slice based type-reduction method in detail. Section 5 discusses
the case study involving Kenyir Lake bathymetry, including results and analysis. Finally, Section 6
concludes the study and outlines potential future work.

2. Related Works

The modeling of uncertainty in surface interpolation in this study has been deeply influenced by
advances in fuzzy set theory and neutrosophic logic. Zadeh's foundational work on fuzzy sets [1]

introduced the concept of gradual membership, where a T1FS A in universe X is defined as:

A={(x,,u/] (x))‘xe)(,,u;1 (x)e[O,l]} (1)
where iy (x) is the membership function that quantifies the degree of belonging of element x to
the set.

To handle higher levels of uncertainty, Zadeh extended this idea into T2FS [3], where the membership
function itself is fuzzy. A T2FS Ais formally defined as:

212{()(,‘,,[1;1 (x))‘xeX} (2)
where:

fiy () ={ (%, 15, () e [0.1], 1, () e 0,1]}
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Here, each primary membership x has a secondary membership function over the domain u € [0,1]

forming a three-dimensional membership space.
In parallel, Smarandache proposed neutrosophic sets (NS) [11], a powerful generalization of

A

intuitionistic and fuzzy sets. A single-valued neutrosophic set 4 in universe X is defined by three
independent membership functions:

A

A:{(x,TA(x),IA(x),FA(x»‘xeX} (3)
where:

o T,(x)e[0,1]: truth-membership degree

e 1,(x)€[0,1]: indeterminacy-membership degree

o I

A

(x) €[0,1] :falsity-membership degree

Unlike intuitionistic fuzzy sets, neutrosophic sets allow T+ 7+ F to range freely within [0,3],
providing more expressiveness.

To further enhance the capacity for uncertainty representation, researchers proposed T2NS, where
each of the three components becomes a fuzzy set [12]:

;Iz{(x,TA(x),IA(x),FA(x»‘xeX} (4)
with:

7 (5) = (1t () €[0.1], (1) € [021])
1, (5)={ (1,0 () e [0.1]om, () [011]
Fu(0)={(i 0 D) €[0.1] v, () [0.1]

This advanced framework supports multi-level uncertainty modeling for each dimension of
information: truth, indeterminacy, and falsity to making it highly suitable for complex systems like
bathymetry.

Despite these advancements, most practical work in neutrosophic geometric modeling, such as
Bézier curves and B-spline surfaces, has focused on type-1 or interval-based representations
[9,10,13-22]. Several works have introduced deneutrosophication strategies to convert neutrosophic
representations to crisp values, and neutrosophication to fuzzified precise data into neutrosophic
domains [23-25]. However, a gap remains: type-reduction of type-2 neutrosophic geometric models,
particularly for B-spline surface interpolation, has not been systematically studied.

This paper fills this gap by proposing an aBy-slice-based vertical decomposition strategy to
reduce a T2NBsS into a TINBsS. This method preserves uncertainty semantics while improving
computational efficiency and interpretability for real-world modeling, such as lake bathymetry.

3. Type-2 Neutrosophic B-spline Interpolation Model
The type-1 neutrosophic B-spline interpolation model has been introduced in [9]. Therefore, a

type-2 neutrosophic B-spline interpolation model will be introduced based on the study and the
definition of T2NS features as follows:
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Definition 1 (Type-2 neutrosophic B-spline surface interpolation)

A A n+l,m+1
Let P= {P. } as a set of type-2 neutrosophic control net relations (T2ZNCNR). Thus, the tensor

ij
i=1,j=1

product type-2 neutrosophic B-spline surface is given as

n+l m+l A

gsS(u, w) = ZZZ?/NI" (u)Mf (w) (5)

i=l j=l
with N/ (u) and M/’.(w) are B-spline basis functions in the u and w directions, respectively, can be

written as follows:

| 1 if w<u<u,
N;(u)= :
0 otherwise
(i) o () (©)
N, (u) :—lNi B (”)+H—Ni+_1 (1)
k-1 T Y; Ui — Uiy
M) Lif w, <w<w,,
A W)= '
/ 0 otherwise
(7)
M _ (W_Wj) M- (WN_W) M-
W=———=M (W) +——M, (W)
-1 W Wit =Win

with u, and v, are the elements of the knot vectors.

Next is the type-2 neutrosophic B-spline surface for the truth T, indeterminacy 7, and falsity /
for primary memberships while truth £, indeterminacy 77, and falsity v for secondary memberships
can be described as in Definition 2. The definition will only fuzzified the z-axis through Eq. (5) as
follows:

Definition 2 (Type-2 Neutrosophic B-spline Surface for 7,1, F, u,n and v)

Let }%Tj’[’F and }é’;’”’v as the T2NCNR for truth, indeterminacy, and falsity memberships for primary

and secondary memberships, respectively. Thus, the definition of T2NBsS for truth, indeterminacy,
and falsity’s primary and secondary memberships are as follows:

gsS(u,w): BsS” (u,w),BsS’ (u,w),BsSF (u,w), (8)
BsS* (u,w),BsS" (u,w),BsSV (u,w)
with

n+l m+l A n+l m+l A

SN PINF )M (w), .Y PLNF )M (w),
i=1 j=1 i=1 j=1

n+l m+1 n+l m+l A n+l m+l A

22PN = 3D PEN M0, 3, 3 PL N M), )
i=1 j=1 i=1 j=1 i=1 j=1

n+l m+l A n+l m+l A

22 PN M0, 3, ) PN )M (w)

i=l j=1 i=l j=1

ifthe T, 1, F, u,n and v follows the conditions in Eq. (3).
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The type-2 neutrosophic B-spline surface interpolation is an important method in geometric
modeling because it can help in visualizing this study problem. The generation of T2NBsS
interpolation is obtained by defining a control mesh for the surface that interpolates the data points.
Therefore, for each known surface data point, Eq. (5) gives a linear equation to the vertices of the

control mesh that are unknown, }é}. Eg. (5) can be written as a single surface data point and produce

a system of simultaneous equations in matrix form as follows:

pRet

A
A

with [F]=N/M, [15} is T2NDN and [P} is T2NCNR. Thus, the T2NCNR can be obtained as follows:

i

The parameter values for u;, and w, for each surface data point are obtained using the

approximation method length of the span. Specifically, for data point r, the parameter value at data
point £” in the parameter direction, u is
u, =0

D Y2} —f%‘ (12)
St I RS
e Zr=2 Dr _Dr’1

and for data point s, the parameter value at data point /" in the parameter direction, w is

w, =0
D

I A
Z -D,
Wl S=2 N N
= , 122

Wmax Z J
s=2

with u_and w,__are the maximum values that correspond to the knot vector.

(13)

N S—

4. Neutrosophic Type-Reduction by using a-Slice Based Vertical Interval Approximation

Type-reduction is a key operation in type-2 fuzzy systems, serving as a bridge between a general
type-2 fuzzy set (GT2FS) and a usable type-1 fuzzy output [3]. Traditional methods, such as the
Karnik—Mendel (KM) algorithm, reduce interval type-2 Fuzzy sets (IT2FS) to interval-valued Type-1
sets by iteratively computing centroid bounds. In modeling uncertainty in GT2FS, the secondary
membership function plays a critical role in quantifying the extent of imprecision at each primary
domain value. One effective way to simplify and interpret this uncertainty is by applying a-cuts on
the secondary membership functions, forming vertical slices that yield bounded uncertainty intervals.
Liu [6] and Yeh et al. [7] proposed decomposition strategies using a-cuts to extract interval type-2
fuzzy slices from GT2FSs. These vertical slices represent bounded uncertainty at each primary value,
providing a means for interval-based modeling and centroid approximation without the need for
computationally intensive iterations.

The Interval, :[zl. — 1,z +,ug} is constructed by performing a-level slicing on the secondary

membership function of a Type-2 fuzzy set, where the left and right spreads are computed as
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s =(c,.—pll.)-a and 1) :(prl.—c,,)-a. These expressions define the a-scaled deviation of the

primary value z from its left and right bounds PL and PU, respectively. Although Mendel and John [4]
laid the foundational concepts using vertical slices and the footprint of uncertainty (FOU), this explicit
interval construction is formalized and applied in later works on a-cut and a-plane representation of
Type-2 fuzzy sets [5,6].

While type reduction comes next, after the fuzzification step has been completed. The
defuzzification operation in type-1 Fuzzy Logic Sets (FLSs) is an “expanded" version of type-reduction
in a type-2 FLS [3]. To enable the deneutrosophication of the type-1 NS, neutrosophic type-reduction

is defined and applied to T2NCNR first. After the neutrosophication, it will get a T2ZNCNR,

pT.LF iy
B

pT.LF 0y
plFaar,

Then, do the neutrosophic type-reduction to reduce the T2NCNR, to type-1 neutrosophic

control net relation (TINCNR), }éT’I’F. This method extends the GT2FS a-slice-based vertical interval

approximation proposed by [7], as described in Algorithm 1.

Algorithm 1: Neutrosophic Type-Reduction of T2 NCNR
Input:

:T,I,F :T,I,F :T,I,F :T,I,F . H H
P :{pl PP P }.Prlmary(crlsp)values

Bt = [P{"”’V,Pz“’”’v,...,Rj"””]: Lower bounds of secondary membership
By = [P,"’”’V,Pz"’"’v,...,Rf’”’”]: Upper bounds of secondary membership

&, B,7 € [0.1]: @, B, y-level for slicing

Output: nterval, :[fi’.r” - T”"Fyf"’”,lf}”f + T”ﬂg“}: d,,é,ﬁ—slice interval around each
éT,I,F

Steps:

For each primary value }%U’F e’/

y7R/R% 1,1,V
By +E . - .
——————— and ¢, is specific for the asymmetric case.

Compute the center: ¢, =
Compute the left a-cut offset: " y*#7 = (C,- — B ) : <&,,@,}?>

Compute the right a-cut offset: """ y%/7 = (Pi(“,;’)” —C,-)' a, B, ;7>

Compute the interval around IA’Z.T”’F: Interval, :[ﬁ;”f _ LF @B7 PTAE T”’Fygﬁ’f}

Return all interval Interval, = {BT”’F = DLE @by prir o T"’F,ug’ﬂ’q = [BT’I’F(L),BT’I’F(R)J as the

a, B, y-slice vertical approximation.

Based on Algorithm 1 which is neutrosophic type-reduction of T2ZNCNR, this section will use the
algorithm for T2NBsS. Thus, the algorithm is as follows:

Algorithm 2: Neutrosophic Type-Reduction of T2NBsS
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P = {P IF,PZT’]’F,...,ET”’F}: Primary (crisp) values

By = [Pl‘”V,PZ”’”’V,...,Bf"”’V]: Lower bounds of secondary membership
P.“Ig” = [P]”’”’V,PZ”’”’V,...,P;‘””J: Upper bounds of secondary membership
7=02,8=08,7=1¢e [0,1]: &, B, 7-level for slicing

A

Output: Interval, = [PiT’[’F — DLE ey prhbe  TLE ”7} a, B, 7-slice interval around each

STIF
P
Steps:
For each primary value P™'"" € Z:
Pﬂa’]a"_{_}?ﬂa’)ﬂv

i(L) R

Compute the center: ¢, = and ¢, is specific for the asymmetric case.

Compute the left a-cut offset: 7/ &/ :(c. —Pl(”LfV)< B, 7?>

a
Compute the right a-cut offset: ™" @7 = (Pl(’;'fv _Ci)'< A”@’};>

. :T,I,F, _ :TIF _TJIF, ap7 :T,]F T,I,F 4.8,
Compute the interval around P, .Intervali—{fj 7RG A 7 }

Return all interval

N A A A JPN N A a,By T,I,F
Interval, = l:BT,I,F _ T,I,Fﬂzx,/i’,;/,RT,I,F " T,],F’ug,ﬁ,y:| _ [PT,I,F(L),RT,I,F(R)] _ BeS (t) as the

1

a, 3, y-slice vertical approximation.

5. Neutrosophic Type-Reduction by using Bathymetry Data at Kenyir Lake

The degree for each function is determined based on boat fluctuations, weather factors, traces
recorded on graphics or digital records, as well as Zulkifly [26]'s experience and perception of the
data. Based on this reason, the degrees of truth, falsity, and indeterminacy applied to the entire
bathymetry data are 0.8, 0.1, and 0.3, respectively. Referring to Smarandache [27], the equal
distribution method is used to produce bathymetry data collection degrees for membership and non-
membership functions of 0.95 and 0.25, respectively. Therefore, the triangle of type-2 neutrosophic
numbers is illustrated as in Fig. 1.
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" 2]
Falsity function g (7" )
o3 L
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= Truth function '
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(a)
T A
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F(x)
0.25
Fiv)
E(x")
u (1) 0.95 v (xF) ] A A/ gy F/ A
(b) ()

Fig. 1. Illustration of triangle T2NN for data in Zone 1; (a) Based on the real situation; (b) Triangle T2NN for
truth membership; and (c) Triangle T2NN for falsity membership

The neutrosophic type-reduction model of T2NBsS interpolation will be demonstrated as it
transforms into the type-1 neutrosophic B-spline surface (TINBsS) model in this section by using
Algorithm 3. Fig. (2) and (3) visualize the TINBsS models for truth and falsity memberships,
respectively, for bathymetry data in Zone 1, based on the highest and lowest values, which occur
when a =0.95 and y =0.25.
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(c)
Fig. 2. Type-1 neutrosophic B-spline surface interpolation models for truth membership: (a) With axis, (b)
Without axis, (c) Different view

20 Mean (Turbo)
B ¥ Left (Green Tint)
\ Right (Red Tint)

Depth
&
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(c)
Fig. 3. Type-1 neutrosophic B-spline surface interpolation models for falsity membership: (a) With axis, (b)
Without axis, (c) Different view

The results illustrated in Fig. 2 and Fig. 3 depict the reduced T1NBsS for truth and falsity
memberships of Kenyir Lake Zone 1. These surfaces were derived from the original type-2
neutrosophic model through ay-slice-based type-reduction. As supported by Liu [6] and Yeh et al. [7],
when the a-level increases, the left and right bounds of the uncertainty interval contract toward the
center, reflecting increased confidence. Similarly, at lower y-levels representing less dominance of
falsity, the left and right bounds also approach the central mean, indicating reduced ambiguity. This
consistent convergence behavior ensures a more precise neutrosophic interval representation under
high a or low y scenarios.

In Fig. 2, which presents the truth membership surface, the green-colored regions indicate the
deepest parts of Kenyir Lake, where the truth membership is highest under the selected a-level.
These are zones where the model has high certainty that the bathymetric values correspond to deep
areas. In contrast, the grey regions represent shallower parts of the lake, where the truth value is
lower, reflecting reduced confidence in depth. Meanwhile, in Fig. 3, which shows the falsity
membership surface, the color pattern conveys the opposite. The red regions represent shallow areas
where falsity membership is high, indicating a strong rejection of depth, while the green areas once
again correspond to deeper zones, where the falsity value is low. These complementary surfaces help
distinguish bathymetric depth and shallowness while incorporating uncertainty into the
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interpretation. The topography revealed through this dual-component neutrosophic surface allows
for accurate localization of zones with varying bathymetric certainty, emphasizing the practicality of
component-wise analysis for complex terrain like lakebeds.

The neutrosophic type-reduction process introduced here offers key advantages. First, it
simplifies the multidimensional structure of type-2 neutrosophic sets into manageable interval
representations without iterative computation, unlike the Karnik—-Mendel method [3]. Second, it
improves the clarity of interpretation by maintaining the separate contributions of truth,
indeterminacy, and falsity within the model. This allows users to better understand how each type
of uncertainty affects the data. Finally, by enabling practical visualization of uncertainty across
geographical surfaces, the approach becomes especially valuable for environmental analysis and
hydrographic applications, where decisions often depend on both the accuracy of the data and how
confidently that data can be trusted.

5. Conclusions

This study introduced a novel afy-slice-based type-reduction framework for transforming a
T2NBsS into a TINBsS. The proposed method simplifies the complex secondary membership
structures of truth, indeterminacy, and falsity components by applying vertical decomposition at
selected afy-levels. This non-iterative, component-wise strategy effectively preserves uncertainty
characteristics while significantly improving computational tractability and interpretability.

Application of the method to Kenyir Lake Zone 1 bathymetry demonstrated its ability to reveal
spatial uncertainty patterns in lakebed depth modeling. Analysis of the resulting surfaces showed
that increasing a-levels and decreasing y-values lead to convergence of interval bounds toward the
mean. Moreover, the type-reduced surfaces clearly distinguished between deep and shallow regions,
validating the model's ability to support detailed terrain interpretation.

Overall, the proposed framework presents theoretical advancements in neutrosophic set theory
and fuzzy geometric modeling with real-world geospatial applications. Future research may consider
extending this method by incorporating additional environmental factors relevant to bathymetric
modeling, such as salinity distribution, sediment transport, or turbidity, which can influence depth
readings and uncertainty interpretation. From a modeling perspective, more advanced geometric
techniques like non-uniform rational B-splines (NURBS) could be explored to improve shape flexibility
and continuity in complex lakebed topographies. Furthermore, the current neutrosophic framework
could be compared or combined with other uncertainty-based theories such as Pythagorean fuzzy
sets, g-rung Orthopair fuzzy sets, or intuitionistic fuzzy logic, to assess their relative effectiveness in
handling multi-dimensional imprecision in spatial and environmental datasets.
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