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Modeling bathymetric surfaces often involves managing the uncertainty inherent in 
collected data. Type-2 neutrosophic sets (T2NS) provide a robust mathematical 
framework to represent this uncertainty, especially when truth, indeterminacy, and 
falsity values vary over secondary domains. However, the practical interpretation and 
visualization of type-2 neutrosophic B-spline surface (T2NBsS) models remain 
computationally challenging due to their complex structure. This research addresses 
the problem of simplifying T2NBsS interpolation models for real-world applications, 
particularly in the context of Kenyir Lake bathymetry data. The main objective is to 
visualize a reduction technique that transforms T2NBsS into a type-1 neutrosophic B-
spline surface (T1NBsS) form without significantly losing the accuracy of the 
information. To achieve this, we propose an α-slice based vertical interval 
approximation strategy that slices the secondary membership structure at selected α 
levels to extract interval values of the type-1 triangular neutrosophic set. This method 
bypasses iterative centroid computation and enables efficient surface reconstruction 
while preserving essential neutrosophic characteristics. The results confirm that the 
proposed method effectively bridges the gap between theoretical modeling and 
practical geospatial interpretation. This framework offers a valuable tool for 
researchers and engineers dealing with uncertain spatial datasets in environmental 
and hydrographic domains. 
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1. Introduction 
 

Accurate modeling of bathymetric surfaces is crucial in environmental analysis, reservoir 
management, and hydrographic applications. Bathymetry data often contain uncertainty due to 
measurement errors, sparse sampling, and environmental fluctuations. These uncertainties pose 
challenges for traditional modeling techniques such as deterministic interpolation or type-1 fuzzy 
systems, which lack the ability to represent complex or layered uncertainty [1,2]. 

To overcome these limitations, type-2 fuzzy sets (T2FS) were introduced as an extension of type-
1 fuzzy sets (T1FS), where the membership grades themselves are fuzzy [3]. This approach enables 
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better handling of uncertainties in input information [4]. The practical use of T2FS was further 
developed by Mendel and Karnik, who proposed type-reduction algorithms such as the Karnik–
Mendel (KM) algorithm [4]. In parallel, the concept of neutrosophic sets was introduced by 
Smarandache, allowing representation of truth, indeterminacy, and falsity independently [5]. Type-
2 neutrosophic sets (T2NS), which combine the strengths of T2FS and neutrosophic logic, have since 
been proposed to model more complex forms of uncertainty [6]. 

In surface modeling, B-spline surfaces are widely used due to their continuity, flexibility, and local 
control over surface shape. When combined with T2NS theory, a type-2 neutrosophic B-spline 
surface (T2NBsS) offers a powerful tool to interpolate uncertain spatial data while preserving multi-
dimensional uncertainty characteristics [9,10]. However, practical use of T2NBsS models is hindered 
by the computational burden of processing secondary membership structures and the difficulty in 
interpreting high-dimensional uncertainty in real applications [6,10]. 

To address this issue, researchers have proposed approximation strategies using α-cuts on the 
secondary membership functions. This method creates vertical slices that capture bounded 
uncertainty intervals without relying on iterative centroid computations [7,8]. These α-slice 
strategies provide an efficient and interpretable way to simplify general Type-2 fuzzy models [6]. 

This paper proposes an αβγ-slice based type-reduction framework for converting a T2NBsS into 
a type-1 neutrosophic B-spline surface (T1NBsS). The method simplifies the secondary membership 
structure into interval-valued representations based on selected α levels. A case study on Kenyir Lake 
bathymetry is conducted to demonstrate the effectiveness of this approach. The results show that 
the reduced T1NBsS closely approximates the original T2NBsS with improved computational 
efficiency and interpretability. 

The remainder of this paper is organized as follows. Section 2 provides a review of related work 
on fuzzy and neutrosophic interpolation models and type-reduction techniques. Section 3 introduces 
the mathematical formulation of the type-2 neutrosophic B-spline surface interpolation model. 
Section 4 presents the proposed αβγ-slice based type-reduction method in detail. Section 5 discusses 
the case study involving Kenyir Lake bathymetry, including results and analysis. Finally, Section 6 
concludes the study and outlines potential future work. 
 
2. Related Works 
 

The modeling of uncertainty in surface interpolation in this study has been deeply influenced by 
advances in fuzzy set theory and neutrosophic logic. Zadeh's foundational work on fuzzy sets [1] 
introduced the concept of gradual membership, where a T1FS  in universe X is defined as: 

 (1) 

where  is the membership function that quantifies the degree of belonging of element x to 
the set. 
 
To handle higher levels of uncertainty, Zadeh extended this idea into T2FS [3], where the membership 
function itself is fuzzy. A T2FS  is formally defined as: 

 (2) 

where: 
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Here, each primary membership x has a secondary membership function over the domain  
forming a three-dimensional membership space. 
In parallel, Smarandache proposed neutrosophic sets (NS) [11], a powerful generalization of 
intuitionistic and fuzzy sets. A single-valued neutrosophic set  in universe X is defined by three 
independent membership functions: 

 (3) 

where: 
•  truth-membership degree 

•  indeterminacy-membership degree 

• falsity-membership degree 
 
Unlike intuitionistic fuzzy sets, neutrosophic sets allow  to range freely within [0,3], 
providing more expressiveness. 
To further enhance the capacity for uncertainty representation, researchers proposed T2NS, where 
each of the three components becomes a fuzzy set [12]: 

 (4) 

with: 

 

 
This advanced framework supports multi-level uncertainty modeling for each dimension of 

information: truth, indeterminacy, and falsity to making it highly suitable for complex systems like 
bathymetry. 

Despite these advancements, most practical work in neutrosophic geometric modeling, such as 
Bézier curves and B-spline surfaces, has focused on type-1 or interval-based representations 
[9,10,13-22]. Several works have introduced deneutrosophication strategies to convert neutrosophic 
representations to crisp values, and neutrosophication to fuzzified precise data into neutrosophic 
domains [23-25]. However, a gap remains: type-reduction of type-2 neutrosophic geometric models, 
particularly for B-spline surface interpolation, has not been systematically studied. 

This paper fills this gap by proposing an αβγ-slice-based vertical decomposition strategy to 
reduce a T2NBsS into a T1NBsS. This method preserves uncertainty semantics while improving 
computational efficiency and interpretability for real-world modeling, such as lake bathymetry. 
 
3. Type-2 Neutrosophic B-spline Interpolation Model 
 

The type-1 neutrosophic B-spline interpolation model has been introduced in [9]. Therefore, a 
type-2 neutrosophic B-spline interpolation model will be introduced based on the study and the 
definition of T2NS features as follows: 
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Â

( ) ( ) ( ){ }ˆ , , ,A A AA x T x I x F x x X= Î

( ) [ ]0,1 :AT x Î

( ) [ ]0,1 :AI x Î

( ) [ ]0,1 :AF x Î

T I F+ +

( ) ( ) ( ){ }ˆ̂ , , ,A A AA x T x I x F x x X= Î

( ) ( ) ( )( ) [ ] ( ) ( ) [ ]{ }
( ) ( ) ( )( ) [ ] ( ) ( ) [ ]{ }
( ) ( ) ( )( ) [ ] ( ) ( ) [ ]{ }

ˆ̂ , 0,1 , 0,1

ˆ̂ , 0,1 , 0,1

ˆ̂ , 0,1 , 0,1

A A

A A

A A

A T x T x

A I x I x

A F x F x

T x t t t t

I x i i i i

F x i i f i

µ µ

h h

n n

= Î Î

= Î Î

= Î Î



Warisan Journal of Mathematical Sciences and Engineering 
Volume 2, Issue 1 (2025) 70-82 

73 
 

Definition 1 (Type-2 neutrosophic B-spline surface interpolation) 

Let    as a set of type-2 neutrosophic control net relations (T2NCNR). Thus, the tensor 

product type-2 neutrosophic B-spline surface is given as 

 (5) 

with  and  are B-spline basis functions in the u and w directions, respectively, can be 
written as follows: 

 

 

(6) 

 

 

(7) 

with  and are the elements of the knot vectors. 

 
Next is the type-2 neutrosophic B-spline surface for the truth , indeterminacy , and falsity  

for primary memberships while truth , indeterminacy , and falsity  for secondary memberships 
can be described as in Definition 2. The definition will only fuzzified the z-axis through Eq. (5) as 
follows:  
Definition 2 (Type-2 Neutrosophic B-spline Surface for ) 

Let  and  as the T2NCNR for truth, indeterminacy, and falsity memberships for primary 
and secondary memberships, respectively. Thus, the definition of T2NBsS for truth, indeterminacy, 
and falsity’s primary and secondary memberships are as follows: 

 (8) 
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The type-2 neutrosophic B-spline surface interpolation is an important method in geometric 
modeling because it can help in visualizing this study problem. The generation of T2NBsS 
interpolation is obtained by defining a control mesh for the surface that interpolates the data points. 
Therefore, for each known surface data point, Eq. (5) gives a linear equation to the vertices of the 

control mesh that are unknown,  Eq. (5) can be written as a single surface data point and produce 
a system of simultaneous equations in matrix form as follows: 

 (10) 

with ,  is T2NDN and  is T2NCNR. Thus, the T2NCNR can be obtained as follows: 

 (11) 

The parameter values for  and  for each surface data point are obtained using the 
approximation method length of the span. Specifically, for data point r, the parameter value at data 
point  in the parameter direction, u is 

 (12) 

and for data point s, the parameter value at data point  in the parameter direction, w is 

 (13) 

with  and are the maximum values that correspond to the knot vector. 

 
4. Neutrosophic Type-Reduction by using α-Slice Based Vertical Interval Approximation 
 

Type-reduction is a key operation in type-2 fuzzy systems, serving as a bridge between a general 
type-2 fuzzy set (GT2FS) and a usable type-1 fuzzy output [3]. Traditional methods, such as the 
Karnik–Mendel (KM) algorithm, reduce interval type-2 Fuzzy sets (IT2FS) to interval-valued Type-1 
sets by iteratively computing centroid bounds. In modeling uncertainty in GT2FS, the secondary 
membership function plays a critical role in quantifying the extent of imprecision at each primary 
domain value. One effective way to simplify and interpret this uncertainty is by applying α-cuts on 
the secondary membership functions, forming vertical slices that yield bounded uncertainty intervals. 
Liu [6] and Yeh et al. [7] proposed decomposition strategies using α-cuts to extract interval type-2 
fuzzy slices from GT2FSs. These vertical slices represent bounded uncertainty at each primary value, 
providing a means for interval-based modeling and centroid approximation without the need for 
computationally intensive iterations.  

The  is constructed by performing α-level slicing on the secondary 

membership function of a Type-2 fuzzy set, where the left and right spreads are computed as 
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 and . These expressions define the α-scaled deviation of the 
primary value z from its left and right bounds PL and PU, respectively. Although Mendel and John [4] 
laid the foundational concepts using vertical slices and the footprint of uncertainty (FOU), this explicit 
interval construction is formalized and applied in later works on α-cut and α-plane representation of 
Type-2 fuzzy sets [5,6]. 

While type reduction comes next, after the fuzzification step has been completed. The 
defuzzification operation in type-1 Fuzzy Logic Sets (FLSs) is an “expanded" version of type-reduction 
in a type-2 FLS [3]. To enable the deneutrosophication of the type-1 NS, neutrosophic type-reduction 

is defined and applied to T2NCNR first. After the neutrosophication, it will get a T2NCNR, . 

Then, do the neutrosophic type-reduction to reduce the T2NCNR,  to type-1 neutrosophic 

control net relation (T1NCNR), . This method extends the GT2FS α-slice-based vertical interval 
approximation proposed by [7], as described in Algorithm 1. 

 
Algorithm 1: Neutrosophic Type-ReducLon of T2NCNR 
Input:  

: Primary (crisp) values 

: Lower bounds of secondary membership 

: Upper bounds of secondary membership 

: -level for slicing 

Output: : -slice interval around each 

 
Steps: 

For each primary value : 

Compute the center:  and  is specific for the asymmetric case. 

Compute the lel α-cut offset:  

Compute the right α-cut offset:  

Compute the interval around :  

Return all interval  as the 

-slice verncal approximanon. 
 
Based on Algorithm 1 which is neutrosophic type-reduction of T2NCNR, this section will use the 
algorithm for T2NBsS. Thus, the algorithm is as follows: 
 
Algorithm 2: Neutrosophic Type-ReducLon of T2NBsS 
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Input:  

: Primary (crisp) values 

: Lower bounds of secondary membership 

: Upper bounds of secondary membership 

: -level for slicing 

Output: : -slice interval around each 

 
Steps: 

For each primary value : 

Compute the center:  and  is specific for the asymmetric case. 

Compute the lel α-cut offset:  

Compute the right α-cut offset:  

Compute the interval around :  

Return all interval 

 as the 

-slice verncal approximanon. 
 
5. Neutrosophic Type-Reduction by using Bathymetry Data at Kenyir Lake 
 

The degree for each function is determined based on boat fluctuations, weather factors, traces 
recorded on graphics or digital records, as well as Zulkifly [26]'s experience and perception of the 
data. Based on this reason, the degrees of truth, falsity, and indeterminacy applied to the entire 
bathymetry data are 0.8, 0.1, and 0.3, respectively. Referring to Smarandache [27], the equal 
distribution method is used to produce bathymetry data collection degrees for membership and non-
membership functions of 0.95 and 0.25, respectively. Therefore, the triangle of type-2 neutrosophic 
numbers is illustrated as in Fig. 1. 
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(a) 

  
(b) (c) 

Fig. 1. Illustration of triangle T2NN for data in Zone 1; (a) Based on the real situation; (b) Triangle T2NN for 
truth membership; and (c) Triangle T2NN for falsity membership  
 

The neutrosophic type-reduction model of T2NBsS interpolation will be demonstrated as it 
transforms into the type-1 neutrosophic B-spline surface (T1NBsS) model in this section by using 
Algorithm 3.  Fig. (2) and (3) visualize the T1NBsS models for truth and falsity memberships, 
respectively, for bathymetry data in Zone 1, based on the highest and lowest values, which occur 
when  and . 

 

 
(a) 
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(b) 

 
 

(c) 
Fig. 2. Type-1 neutrosophic B-spline surface interpolation models for truth membership: (a) With axis, (b) 
Without axis, (c) Different view 
 

 
(a) 
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(b) 

 

 
(c) 

Fig. 3. Type-1 neutrosophic B-spline surface interpolation models for falsity membership: (a) With axis, (b) 
Without axis, (c) Different view 
 

The results illustrated in Fig. 2 and Fig. 3 depict the reduced T1NBsS for truth and falsity 
memberships of Kenyir Lake Zone 1. These surfaces were derived from the original type-2 
neutrosophic model through αγ-slice-based type-reduction. As supported by Liu [6] and Yeh et al. [7], 
when the α-level increases, the left and right bounds of the uncertainty interval contract toward the 
center, reflecting increased confidence. Similarly, at lower γ-levels representing less dominance of 
falsity, the left and right bounds also approach the central mean, indicating reduced ambiguity. This 
consistent convergence behavior ensures a more precise neutrosophic interval representation under 
high α or low γ scenarios. 

In Fig. 2, which presents the truth membership surface, the green-colored regions indicate the 
deepest parts of Kenyir Lake, where the truth membership is highest under the selected α-level. 
These are zones where the model has high certainty that the bathymetric values correspond to deep 
areas. In contrast, the grey regions represent shallower parts of the lake, where the truth value is 
lower, reflecting reduced confidence in depth. Meanwhile, in Fig. 3, which shows the falsity 
membership surface, the color pattern conveys the opposite. The red regions represent shallow areas 
where falsity membership is high, indicating a strong rejection of depth, while the green areas once 
again correspond to deeper zones, where the falsity value is low. These complementary surfaces help 
distinguish bathymetric depth and shallowness while incorporating uncertainty into the 
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interpretation. The topography revealed through this dual-component neutrosophic surface allows 
for accurate localization of zones with varying bathymetric certainty, emphasizing the practicality of 
component-wise analysis for complex terrain like lakebeds. 

The neutrosophic type-reduction process introduced here offers key advantages. First, it 
simplifies the multidimensional structure of type-2 neutrosophic sets into manageable interval 
representations without iterative computation, unlike the Karnik–Mendel method [3]. Second, it 
improves the clarity of interpretation by maintaining the separate contributions of truth, 
indeterminacy, and falsity within the model. This allows users to better understand how each type 
of uncertainty affects the data. Finally, by enabling practical visualization of uncertainty across 
geographical surfaces, the approach becomes especially valuable for environmental analysis and 
hydrographic applications, where decisions often depend on both the accuracy of the data and how 
confidently that data can be trusted. 
 
5. Conclusions 
 

 This study introduced a novel αβγ-slice-based type-reduction framework for transforming a 
T2NBsS into a T1NBsS. The proposed method simplifies the complex secondary membership 
structures of truth, indeterminacy, and falsity components by applying vertical decomposition at 
selected αβγ-levels. This non-iterative, component-wise strategy effectively preserves uncertainty 
characteristics while significantly improving computational tractability and interpretability. 

Application of the method to Kenyir Lake Zone 1 bathymetry demonstrated its ability to reveal 
spatial uncertainty patterns in lakebed depth modeling. Analysis of the resulting surfaces showed 
that increasing α-levels and decreasing γ-values lead to convergence of interval bounds toward the 
mean. Moreover, the type-reduced surfaces clearly distinguished between deep and shallow regions, 
validating the model's ability to support detailed terrain interpretation. 

Overall, the proposed framework presents theoretical advancements in neutrosophic set theory 
and fuzzy geometric modeling with real-world geospatial applications. Future research may consider 
extending this method by incorporating additional environmental factors relevant to bathymetric 
modeling, such as salinity distribution, sediment transport, or turbidity, which can influence depth 
readings and uncertainty interpretation. From a modeling perspective, more advanced geometric 
techniques like non-uniform rational B-splines (NURBS) could be explored to improve shape flexibility 
and continuity in complex lakebed topographies. Furthermore, the current neutrosophic framework 
could be compared or combined with other uncertainty-based theories such as Pythagorean fuzzy 
sets, q-rung Orthopair fuzzy sets, or intuitionistic fuzzy logic, to assess their relative effectiveness in 
handling multi-dimensional imprecision in spatial and environmental datasets. 
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