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Accurate drug delivery in stenosed arteries is influenced by blood flow dynamics, 
particularly velocity distribution and solute dispersion. This study investigates 
unsteady solute transport in a non-Newtonian Casson fluid through a straight artery 
with symmetric stenosis, emphasizing the effects on velocity and dispersion function. 
Using the Generalized Dispersion Model (GDM), the governing equations are solved to 
assess how variations in plug flow region, height of stenosis, length of the stenosed 
area, length from the origin till the stenosed section and the axial position impacts the 
blood flow characteristics. Results indicate that the presence of stenosis significantly 
reduces axial velocity due to increased yield stress, especially near the arterial walls. 
The dispersion function exhibits a declining trend in these regions, suggesting limited 
solute spread, whereas higher dispersion is observed at the arterial center. The 
interplay between yield stress and stenosis geometry contributes to complex 
dispersion behavior, offering insights into convective-diffusive transport under 
physiological conditions. This analysis enhances understanding of solute dynamics in 
stenosed vessels, with implications for optimizing targeted drug delivery strategies. 
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1. Introduction 
 

The analysis of blood flow through arterial segments has long been a focus in hemodynamics, 
particularly when studying pathological conditions such as stenosis. Due to the complex rheological 
nature of blood, it is often modeled as a non-Newtonian fluid. Among several non-Newtonian 
models, the Casson fluid model, introduced by Casson [1], has proven particularly effective in 
capturing blood's yield stress and shear-thinning characteristics. This model has been widely adopted 
to simulate blood flow in both normal and constricted arteries. Gill [2] developed an analytical 
method to solve transient dispersion problems in fully developed laminar flow within a tube. Using a 
series solution, he described how solute concentration changes over time and space. This approach 
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extended Taylor’s dispersion theory and provided a simpler way to handle more complex flow and 
boundary conditions. 

Early work by Haldar [3] provided foundational insights into pulsatile blood flow in stenosed 
arteries, motivating further studies that incorporate the Casson model into vascular simulations. 
Siddiqui et al., [4] emphasized the relevance of using non-Newtonian models to analyze blood flow 
through irregular geometries such as stenosed vessels. Building on this, Chakravarty and Mandal [5] 
examined flow in tapered arteries with stenosis using a layered Casson model, demonstrating the 
impact of pressure gradients and wall behavior on flow dynamics. 

Chemical reactions occurring within the bloodstream also play a crucial role in altering solute 
concentration and transport. When integrated into fluid dynamic models, such reactions influence 
the dispersion of drugs and other transported substances. Recent studies, such as those by Beg and 
Roy [6], have incorporated chemical reaction terms into the governing equations to better represent 
drug delivery scenarios within stenosed arteries. 

Al-Kalbani et al., [7] focuses on solute dispersion in a straight stenosed artery using the Casson 
fluid model with the influence of chemical reactions, similar to the present study. However, his 
analysis is conducted under steady-state conditions and uses the Taylor–Aris dispersion theory, 
whereas the current study addresses unsteady flow and applies the Generalized Dispersion Model 
(GDM). Thus, while both studies share the same fluid model and artery geometry, mine offers a more 
dynamic representation by capturing time-dependent dispersion behavior. Jaafar et al., [8] 
investigates unsteady solute dispersion using the GDM, aligning with the time-dependent nature of 
my research. However, the author uses a Bingham fluid model instead of Casson fluid, considers 
overlapping stenoses, and excludes chemical reaction effects. In contrast, the present study 
maintains a straight stenosed artery, incorporating chemical reactions, and uses the Casson model, 
making it more reflective of actual blood rheology under pathological conditions. Raj et al., [9] 
presented a mathematical investigation of solute dispersion in non-Newtonian blood flow through a 
stenosed artery under the influence of a chemical reaction, employing the Casson fluid model. Their 
approach centered on obtaining approximate analytical solutions using the Adomian Decomposition 
Method (ADM), with particular emphasis on analyzing the velocity and solute concentration profiles. 
While their study shares common ground with the present work in terms of fluid model, arterial 
stenosis, and chemical reactivity, the scope and methodology differ significantly. 

Besides, Jaafar et al., [10] investigated the unsteady dispersion of a solute in blood flow in the 
presence of a first-order chemical reaction. In this study, blood was modelled as a non-Newtonian 
Casson fluid to reflect its realistic flow behaviour under physiological conditions. The analysis was 
carried out using the generalized dispersion model (GDM), which was applied to two flow 
geometries, a circular pipe and a parallel plate channel. The main objective was to understand how 
chemical reactions and vessel geometry influence the dispersion function and relative axial diffusivity 
over time. Dhange et al., [11] investigated the effect of a forced field on blood flow through an artery 
with overlapping stenosis. Blood was modeled as a Casson fluid, and the artery was treated as an 
inclined, axisymmetric tube. The study analytically examined velocity, flow resistance, and wall shear 
stress under varying field strengths, stenosis heights, and inclination angles, highlighting the 
influence of external forces on hemodynamics in diseased arteries. Dhange et al., [12] analyzed the 
hemodynamic properties of blood flow in an angled artery with overlapping stenosis, incorporating 
the effects of a force field and suspended gold nanoparticles. Blood was modeled as a non-Newtonian 
nanofluid, and the study focused on evaluating velocity, temperature distribution, wall shear stress, 
and flow resistance. The results demonstrated that both the external force field and gold 
nanoparticle suspension significantly influence flow behavior, offering potential improvements in 
therapeutic flow regulation. Elias et al., [13] studied the dispersion of solute in a Casson fluid flowing 



Warisan Journal of Mathematical Sciences and Engineering 
Volume 2, Issue 1 (2025) 26-49 

28 
 

through a stenosed artery under the influence of body acceleration and velocity slip at the arterial 
wall. Using the generalized dispersion model, they derived expressions for the velocity profile, 
dispersion function, and mean concentration. Their findings showed that increased body acceleration 
and slip conditions enhance solute transport and reduce flow resistance, offering insights into 
controlled drug delivery under physiological forces. 

Current studies rarely integrate unsteady flow, Casson fluid behavior, and chemical reactions 
within a single model to analyze solute dispersion in stenosed arteries. Most existing work either 
assumes steady-state conditions, uses different fluid models, or neglects the impact of reaction 
kinetics. There is limited analytical research applying the Generalized Dispersion Model (GDM) to 
capture the combined effects of these parameters in a straight artery with symmetric stenosis. 

Drug delivery in patients with arterial stenosis remains a clinical challenge due to altered blood 
flow patterns and complex solute transport mechanisms. In particular, the presence of chemical 
reactions and the non-Newtonian nature of blood significantly affect the velocity distribution and 
dispersion of solutes within narrowed arteries. These factors, combined with geometric variations in 
stenosed segments, complicate the prediction of drug movement. To improve targeted treatment 
strategies, it is essential to conduct a detailed analytical study on how velocity and dispersion are 
influenced under unsteady flow conditions. The main objective of this study is the need for a 
comprehensive understanding of solute behavior in non-Newtonian blood flow with chemical 
reactions, focusing on a straight artery with symmetric stenosis. The Generalized Dispersion Model 
(GDM) is used to derive and evaluate the dispersion function, which quantifies axial solute spreading. 
Key variables investigated include the plug flow region, height of stenosis, length of the stenosed 
area, distance from the origin to the stenosed section, and the axial position. Analytical and graphical 
results are obtained in order to offer insights on how these parameters influence solute dispersion 
and transport efficiency in physiologically relevant arterial geometries. 
 
2. Methodology  
2.1 Mathematical Formulation 
 

This investigation is conducted within a two-dimensional rigid tube framework, incorporating the 
effects of chemical reactions. This encompasses research about the flow characteristics of Casson’s 
fluid and the dispersion of solutes in the context of non-Newtonian blood flow. The focus is on 
velocity and dispersion functions of blood flow. This research additionally encompasses the analysis 
of unsteady behavior of solute within non-Newtonian fluids that undergo chemical reactions.  

Figure 1 shows the geometry for a straight stenosed artery in the bloodstream using the 
cylindrical polar coordinate system  where the artery design for the Casson fluid model with 

stenosis where  is the axial velocity,  is the axial coordinate,  is the radius of artery,   is the 

azimuthal angle,  is the radius of the plug flow region in circular artery and  is the length of the 

solute, represents the radius of the stenosed segment between the stenosed area and plug 

flow region at the axial position ,  is the length from the origin till the stenosed section,  is 

the length of stenosed area,  represents the point at axial position at Cartesian coordinate and 

 is the maximum height of stenosis. A stenosis with symmetry above and below the central axis is 
depicted in the Figure 1, which causes a consistent narrowing in the radial direction. 
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Fig. 1. The geometry for a straight stenosed artery 

 
2.2 Momentum Equation 
 
The momentum equation for steady flow is defined as below: 

 ,            (1) 

 

where , , ,  and  and  are plug core radius, shear stress, yield stress, pressure, axial 

distance and pressure gradient in dimensional form.  
 

The boundary condition of Eqn (1) is given as follows: 

       is finite at = 0.                     (2) 
 
2.3 Governing Equation 
 
The constitutive equation for a Casson fluid is given by Jaafar et al. [10] as follows: 
 

                                                       (3) 

 
where  is the viscosity coefficient of Casson fluid with  dimension and  is the yield stress. 

When , the Casson fluid model reduces to then Newtonian fluid model. The central region of 

the artery is referred to as the plug flow area, also known as the plug core region when . For 
unknown velocity , no slip at the wall of the circular pipe creates the no slip boundary condition as 
follows: 

      at ,                    (4) 
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where 

                          (5) 

 

where , , , ,  and  represents the radius of the stenosed segment, radius of the 
artery without stenosis, the length of stenosis and the distance from the origin, the maximum height 
of stenosis and the point at axial axis in direction. 

2.3.1 Convective diffusion coefficient 
 
The two-dimensional unsteady convective-diffusion equation of solute concentration similar to 
Debnath et al. [14] and Roy and Beg [15] in cylindrical coordinate system is given as 
 
                 

                                                                                             (6) 

 
where                                                    

                                                                                                                            (7) 

 
where  is the concentration of solute in components and is the molecular diffusion. 
According to Gill and Sankarasubramanian [16] stated the initial condition for (6) and (7) , for 
component  is as below,  
 

 
 
                 (8)

         
 
 
   

 
The boundary conditions for component  for (6) and (7), given by  
 
                                                                                                                            (9) 
 
for symmetry at the centre of a circular pipe ,the boundary condition for (6) and (7) is given by 
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                                                                                                 (10)

  
and  for solute concentration gradient at the wall, the boundary condition for (6) and (7) is 
given by 
 

                                                                 .                              (11) 

 
2.3.2 Non-dimensional variables  
 
The non-dimensional variables are referred to Dash et al. [17], Sankar and Lee [18] and Sebastian and 
Nagarani [19] as the following: 
 

                                               (12) 

where , , , , , , , , , , , and are fluid characteristic velocity, plug core 
radius, radial direction, shear stress, yield stress, stenosed radius, pressure, axial distance, velocity in 
the  direction, radius of the artery in plug flow region, solute concentration,  length of the stenosed 
area, height of stenosis and length from the origin till the stenosed section. 

2.3 Method of Solution 
 
By using non-dimensional variables in Eqn (12) into Eqn (1) and Eqn (2), the momentum equation and 
boundary condition are given as follows 

                                                              (13) 

and 

                                   is finite at = 0.                                                                                (14) 

 

The outcome of shear stress is obtained by integrating Eqn (13) with respect to  using the boundary 
condition in Eqn (14) as follows 
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                                                                                  (15) 

By using non dimensional variables of Eqn (12) into Eqn (3) until Eqn (5), the non-dimensional variable 
of constitutive equation of Casson fluid is obtained as follows 

 

                 if                                                        (16) 

 

                             at ,                  (17) 

where 

                        (18) 

By integrating Eqn (13) with respect to r by substituting Eqn (15) into Eqn (16) subject to Eqn (17), 
the velocity in the outer non-plug core region is obtained as follows:  

                          .                                 (19) 

Evaluating  in the Eqn (19), the velocity in the plug flow region is shown as follows: 

                  .                               (20)  

Mean velocity is solved using integral method by using Eqn (19) and Eqn (20), which then is formed 
as follows: 

                                                                         (21) 

The relative velocity in the plug core region, and the relative velocity in outer core 
region,  are given by 
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                                                      (23) 

Using non-dimensional variables of Eqn (12) into Eqn (6) until Eqn (11) to yield as follows 

 

                                        (24) 

where 

        ,                  (25) 

Pe is the Peclet number for the flow in a circular artery which is given by Dash et al. [17] and Ramana 
et al. [20], and   

     .                                                                        (26)   

Next, the initial condition in non-dimensional variable, for component  is as below,  
                                               

                                                                                              (27) 

the boundary conditions are given by 

     ,                                          (28)
       

for symmetry at the centre of a circular artery ,the boundary condition is given by 

                                              (29)

           

and for solute concentration gradient at the wall, the boundary condition is given by 

                                                                     .                                                                   (30) 
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By using approach of Gill and Sankarasubramanian [16] and by assuming the solution of Eqn (24) as 

a derivative series expansion involving is shown as follows: 

      ,                            (31) 

where  is the mean concentration of the solute over a cross-sectional area of the geometry, 

 is the dispersion function associated with . 

2.3.1 Generalized Dispersion Model (GDM) 
 
Generalized Dispersion Model (GDM) is a derivative series expansion of the approach of Gill and 
Sankarasubramanian [16] which is given as 

                                      (32) 

where is the transport coefficient derived as 

                                   (33) 

with the Kronecker delta, stated as 

                                                                                                  (34) 

According to Eqn (33),  is the longitudinal convection coefficient and  is the longitudinal 
diffusion coefficient. When ,it is observed that Eqn (32) is the same as stated by Gill and 
Sankarasubramanian [16]. 
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                                               (36) 

and 

                            (37) 

The initial and boundary conditions of  is implied that  must satisfied the following initial 
and boundary conditions given by Gill and Sankarasubramanian [16]. 

 

                         (38) 

 

                       (39) 

and 

  ,                               (40) 

respectively. 

The dispersion function is the coefficient of which plays an important role in measuring 

the deviation of the local concentration  from the mean concentration . The 
solution of the Eqn (35) satisfying the boundary conditions from Eqn (38) – Eqn (40) and can be 
separated into two following parts, (Gill & Sankarasubramanian) [16] 

              ,                              (41) 

where is the dispersion function in the steady state and is the dispersion function in 
the unsteady state that describes the time dependent nature of the dispersion of the solute. Applying 
Eqn (41) in Eqn (35) yields, 

                                  (42) 
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Grouping the  and  terms together and equating each of these to zero, obtain the 

respective simplified differential equations of , the terms of  in Eqn (42) is equal to zero 

for steady dispersion of solute as shown below 

                                                                                           (43) 

and  as given by follows: 

           .                              (44) 

Substituting Eqn (41) into conditions Eqn (38) – Eqn (40), and grouping  and  terms 
together, the initial condition of   is given by 

                                                             (45) 

and the boundary conditions of   and  are given as follows: 

        ,                  (46) 

 

                      ,                  (47) 
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Equating the solvability of  and , the following solvability conditions for  and 

, are as follows, (Gill and Sankarasubramanian) [16] 
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By integrating Eqn (43) with respect to  using boundary condition Eqn (46), Eqn (47) and Eqn (50), 
the solution of the steady dispersion function in the plug flow region is given by  

 

                 (52) 

 

and the solution of steady dispersion function in the outer flow region,  is not shown in this 
study as the result is complex. 

Using variable separable method into Eqn (44) and Bessel function subject to the boundary 
conditions the most general solution of   is given as: 

                               (53) 

where 

                                                                (54) 

 
3. Results and Discussion  
3.1 Velocity of the Blood Flow 
 

Variations in blood flow velocity under different variables as radius of the artery in plug flow 
region, height of stenosis and length of the stenosed area are studied. The variation of blood flow of 
velocity is compared to Dash et al., [17] in order to validate the variations. Figure 3 shows the 
validation of current study with Dash et al., [17]. The value used in order to tally Dash et al. [17] are 

. As a result, the velocity variation 
measured is exact.  
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Fig. 3. Validation of present study of velocity with Dash et al., [17] 
 

Figure 4 shows the variation of velocity,  for different values of radius of the artery in plug flow 
region, . The focus of this figure is plug flow region, and the value studied in this graph are 0.05, 
0.10, 0.15, 0.20, and 0.25. The constant value used in this figure are  

. From the generated graph, as the radius of the 
artery in plug flow region increases, the velocity of the blood flow decreases. This inverse trend 
attributes to the expansion of the plug core, which reduces the velocity gradient across the arterial 
cross-section. As the plug region becomes wider, the contribution of the shear-driven flow near the 
vessel wall diminishes, resulting in a lower overall flow velocity. This behavior is consistent with the 
rheological properties of non-Newtonian fluids, where velocity profiles are sensitive to radial changes 
and shear-dependent viscosity. 
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Fig. 4. Variation of velocity,  for different values of radius of the artery in plug flow region, . 

Figure 5 shows the variation of velocity,  for different values of height of stenosis, . The focus 
of this figure is height of stenosis, and the value studied in this graph are 0.1, 0.2, 0.3, 0.4 and 0.5. 

The constant value used in this figure are . 

From the generated graph, as the height of stenosis increases, the velocity of blood flow decreases. 
This observation is consistent with the expected hemodynamic behavior in stenosed arteries, where 
a greater degree of narrowing imposes higher resistance to flow. The reduction in effective cross-
sectional area due to increased stenosis height limits the passage of blood, thereby diminishing the 
axial velocity. In the context of non-Newtonian blood behavior, this effect becomes more 
pronounced, as the shear-dependent viscosity further influences the velocity distribution. 
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Fig. 5. Variation of velocity,  for different values of height of stenosis,  
 

Figure 6 shows the variation of velocity,  for different values of length of the stenosed area, 
. The focus of this figure is the length of the stenosed area, and the value studied in this graph are 
1.0, 1.2, 1.6, 1.8 and 2.0. The constant value used in this figure are 

. The point of study at axial axis in 

direction is set as , in order is set at the peak of stenosis. From the generated graph, 

when increases, the velocity of blood flow decreases and then increases. This behavior can be 
interpreted as a result of the competing effects between flow restriction and pressure recovery. At 
shorter stenosis lengths, the narrowing dominates, causing significant resistance and reduced 
velocity. However, as the length extends further, the flow begins to adjust and stabilize over the 
longer constricted region, allowing for partial pressure recovery and a corresponding rise in velocity. 
This pattern reflects the complex dynamics of blood flow in elongated stenotic segments and 
underscores the importance of stenosis geometry, in not just height but also axial length, influencing 
hemodynamic performance, particularly under non-Newtonian flow conditions. 
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Fig. 6. Variation of velocity,  for different values of length of the stenosed area, . 

 
3.2 Dispersion Function of the Blood Flow 
 

The dispersion function is affected under different conditions of radius of the artery in plug flow 
region, height of stenosis, length of the stenosed area, length from the origin till the stenosed section 
and the axial position. The variation of blood flow of velocity is compared to Dash et al., [17] in order 
to validate the variations. Figure 7 shows the validation of current study with Dash et al., [17]. The 
value used in order to tally Dash et al., [17] are  

. As a result, the dispersion function variation measured is exact.  
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Fig. 7. Validation of present study of dispersion function with Dash et al., [17] 

 
Figure 8 shows the variation of dispersion function,  for different values of radius of the artery 

in plug flow region, . The focus of this figure is plug flow region, and the value studied in this graph 
are 0.1, 0.15, 0.20, 0.25 and 0.3. The constant value used in this figure are  

. 

From the generated graph, as the radius of the artery in plug flow region increases, the dispersion 
function decreases. When the plug flow region becomes wider, the spread of the solute along the 
artery becomes less. A wider plug region causes the flow to become more uniform, which reduces 
the mixing and spreading of the solute. This finding shows that the size of the plug flow region can 
strongly affect how substances are transported in the blood, especially in narrowed arteries. 
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Fig. 8. Variation of dispersion function,  for different values of radius of the artery in plug flow region, . 

 
Figure 9 shows the variation of dispersion function,  for different values of height of stenosis, . 
The focus of this figure is height of stenosis, and the value studied in this graph are 0.1, 0.15, 0.20, 
0.25 and 0.3. The constant value used in this figure are: 

. 

From the generated graph, as the height of stenosis increases, the dispersion function in the blood 
flow also increases. This means that when the narrowing in the artery becomes more smaller, the 
spreading of solutes in the blood flow becomes greater. A higher stenosis height causes more 
disturbance in the flow, leading to greater mixing and uneven movement of particles. This result 
shows that the severity of stenosis can significantly affect how solute are distributed in the 
bloodstream. 
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Fig. 9. Variation of dispersion function,  for different values of height of stenosis, . From the generated 
graph, as the height of stenosis increases, the dispersion function in the blood flow also increases 

 
Figure 10 shows Variation of dispersion function,  for different values of length of the stenosed 

area, . The focus of this figure is length of the stenosed area and the value studied in this graph are 
1.0, 1.5, 2.0, 2.5 and 3.0. The constant value used in this figure are  

. The 
point of study at axial axis in direction is set to be constant at , because the graph appears to 
constant if is set to be at the peak of stenosis. From the generated graph, as the length of the 
stenosed area increases, the dispersion function in the blood flow increases, and then decreases at 

and then increases again from . This trend suggests the presence of a local minimum 

in the dispersion function with respect to . Physically, when the stenosed length increases at first, 
the flow becomes more disturbed, which enhances solute dispersion. However, beyond a certain 
length, the flow begins to stabilize within the narrowed region, reducing mixing and hence dispersion. 
If the length increases further, the flow may re-develop and create new mixing layers, causing 
dispersion to rise again. 
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Fig. 10. Variation of dispersion function,  for different values of length of the stenosed area, . 
 

Figure 11 shows variation of dispersion function,  for different values of length from the origin 
till the stenosed section, . The focus of this figure is length from the origin till the stenosed section 
and the value studied in this graph are 0.1, 0.15, 0.20, 0.25, 0.30. The constant value used in this 
figure are  

.  
This fixed position is selected because the graph remains more stable when evaluated at this point 
compared to the peak of stenosis. From the generated graph, as the length from the origin till the 
stenosed section increases, the dispersion function in the blood flow also increases. This means that 
when the stenosed section is located farther from the origin, the solute dispersion becomes greater. 
The increase in distance allows the blood flow to develop a more stable and layered profile before 
encountering the stenosis. As a result, when the flow reaches the narrowed section, the interaction 
between velocity gradients and solute particles is more pronounced, leading to greater axial 
dispersion. 
 
 

1f 0l

1f
'd

0 0 03,  A 1,  0.01,  0,  2.5,  0.2,  1,  0.5,  1,  0.1 and 1pA P a b B R l r za d= = = = = = = = = = = =



Warisan Journal of Mathematical Sciences and Engineering 
Volume 2, Issue 1 (2025) 26-49 

46 
 

 
 

Fig. 11. Variation of dispersion function,  for different values of length from the origin till the 

stenosed section,  
 

Figure 12 shows variation of dispersion function,  for different values of point at axial position, 
. The focus of this figure is point at axial position and the value studied in this graph are 0.7, 0.8, 

0.9, 1.0, 1.1. The constant value used in this figure are  
. 

From the generated graph, as the point at axial position increases along the axis in direction, the 
dispersion function in the blood flow increases. This trend suggests that the further downstream the 
observation point is located, the more the solute has dispersed. As the flow progresses through the 
stenosed region and beyond, the velocity gradients and flow disturbances enhance axial mixing, 
resulting in greater solute spread. This reflects how dispersion is cumulative along the flow path. 
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Fig. 12. Variation of dispersion function,  for different values of point at axial position,  

 
4. Conclusions 

 
In this study, the primary objective was to investigate solute dispersion in non-Newtonian blood 

flow through a straight stenosed artery in the presence of a chemical reaction, using the Casson fluid 
model and the Generalized Dispersion Model (GDM). The velocity profile was derived by solving the 
governing momentum and constitutive equations in cylindrical coordinates, with appropriate 
boundary conditions that include velocity slip at the arterial wall. These velocity profiles were then 
used to analyze the dispersion function, which characterizes the axial spreading of solutes within the 
bloodstream. Five key parameters were examined which are the radius of the artery in the plug flow 
region, the height of the stenosis, the length of the stenosed area, the distance from the origin to the 
beginning of the stenosis, and the axial position along the artery. Symbolic computation and graphical 
analysis were used to assess how variations in these parameters influence both the velocity 
distribution and the dispersion function. 

The findings indicate that increasing the plug flow region radius results in a decrease in both flow 
velocity and dispersion, suggesting a more uniform but less mixed flow profile. Greater stenosis 
height reduces the velocity while enhancing dispersion due to stronger flow disturbances. Changes 
in the length of the stenosed segment reveal a non-linear effect on dispersion, where it initially 
increases, then decreases, and subsequently rises again, reflecting the balance between flow 
resistance and pressure recovery along the narrowed region. When the stenosis is located further 
downstream from the origin, the dispersion function increases as the flow becomes more developed 
before encountering the constriction. Additionally, increasing the axial observation point reveals that 
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dispersion accumulates further along the artery. Overall, the results underscore the significant 
influence of arterial geometry and stenosis position on solute transport, offering valuable insights for 
48modelling drug delivery, interpreting pathological flow behavior, and enhancing therapeutic 
strategies in vascular diseases involving non-Newtonian blood dynamics. 
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