
 
Warisan Journal of Mathematical Sciences and Engineering 1, Issue 1 (2025) 1-11 

 

1 
 

 

Warisan Journal of Mathematical  

Sciences and Engineering 

 

Journal homepage:        
https://warisanunggul.my/index.php/wjmse/index 

ISSN: 3093-6896 

 

An Efficient Approach to Approximate Analytical Solutions of Second-Order 
Nonlinear Telegraph Equations 

 

Che Haziqah Che Hussin1, *, Arif Mandangan2, Abdul Rahman Farhan Sabdin2, Shahzad Sarwar3 

 
1 Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia 
2 Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia 
3 Department of Mathematics, College of Computing and Mathematics, King Fahd University of Petroleum and Minerals, Saudi Arabia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 3 February 2025 
Received in revised form 28 April 2025 
Accepted 10 May 2025 
Available online 22 May 2025 

We propose the Multistep Modified Reduced Differential Transform Method 
(MMRDTM) as a novel approach to solving Nonlinear Telegraph Equations (NLTEs). To 
streamline the process, we replace the nonlinear terms within NLTEs with 
corresponding Adomian polynomials before implementing the multistep technique. 
This substitution simplifies the solution process and enables more precise 
approximations over longer time domains. To validate the MMRDTM's efficacy and 
accuracy, we solve two different NLTE problems, showcasing the method's capability 
for analytical approximation. The resulting outcomes are then presented both in 
tabular and graphical formats. The findings confirm that MMRDTM delivers highly 
accurate, and in some cases, exact solutions for the studied equations. 
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1. Introduction 
 

The one-dimensional Nonlinear Telegraph Equations (NLTE) of form in Al-Badrani et al., [1] have 
been taken into consideration 
 
𝑤𝑡𝑡 − 𝑤𝑥𝑥 + 𝑎𝑤𝑡 + Φ(𝑤) = ℎ(𝑥, 𝑡),                                                               (1) 

 
the initial conditions are given as follows 
 
𝑤(𝑥, 0) = ℎ1(𝑥), 
 
𝑤𝑡(𝑥, 0) = ℎ2(𝑥), 
 
with 𝑎 > 0 is a constant, Φ is a function of 𝑤 while ℎ is a function of 𝑥 and 𝑡. Eq. (1) emerges in the 
investigation of the transmission of electrical signals within transmission line cables and in the 
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analysis of wave phenomena. A variety of nonlinear phenomena occurring within physical and 
biological processes can be attributed to the interaction between convection and diffusion. This 
interaction is also known as the mutual action of reaction and diffusion. In addition, the telegraph 
equation is better suited for modelling reaction-diffusion in such fields of research than the ordinary 
diffusion equation, as stated by Mittal and Bhatia [2]. 

Various numerical and analytical techniques can be deployed to acquire solution of the telegraph 
equation. For instance, Mohebbi and Dehghan [3] investigated high-order compact solutions to 
obtain solution of the telegraph equation. Then, Gao and Chi [4] proposed an unconditionally stable 
difference scheme for a 1D linear hyperbolic equation. Saadatmandi and Dehghan [5] formulated a 
numerical solution utilizing the Chebyshev Tau method. Furthermore, Yousefi [6] applied the 
Legendre multi-wavelet Galerkin method to obtain the solution of the hyperbolic telegraph equation. 
A numerical method for dealing with the second-order two-space-dimensional telegraph equation 
based on truly meshless local weak-strong (MLWS) methods was devised by Dehghan and Ghesmati 
[7]. In [8, 9], Adomian decomposition method is deployed to compute the solution of the telegraph 
equation. Recently, Sayed et al., [10] solved nonlinear telegraph equations by applying the Adomian 
Decomposition Method with an accelerated formula of Adomian polynomial. 

Many powerful and effective methods for approximating analytical solutions have been 
iteratively improved such as the Adomian Decomposition Method (ADM), Homotopy Perturbation 
Method (HPM), Homotopy Analysis Method (HAM), Variation Iteration Method (VIM), Hirota’s 
Bilinear Method, Balance Method, Inverse Scattering Method, and Differential Transform Method 
(DTM). The PDEs with complicated nonlinearity are hard to solve by the existing method due to their 
nonlinearity term. The existing methods also diverge in wide time area.  

Therefore, in [11], Ray modified the fractional RDTM for the fractional KdV equation. This method 
has been modified by replacing the nonlinear term with related Adomian polynomials. Consequently, 
the nonlinear problem's solutions can be obtained more simply and with fewer computed terms. 
Later, El-Zahar [12] developed an adaptive multi-step DTM for solving singular perturbation initial-
value problems by producing a solution in the form of a quickly converging sequence that achieves 
convergence over an extended period of time. These two methods are proposed in this paper for 
solving second-order nonlinear Telegraph equations.  

The Multistep Modified Reduced Differential Transform Method (MMRDTM) was introduced by 
Che Hussin et al., [13] for the purpose of obtaining solutions to Nonlinear Schrödinger Equations 
(NLSEs). Furthermore, in [14], Che Hussin et al., evaluated the efficacy of the MMRDTM in 
approximating solutions to the Klein-Gordon equations. Subsequently, Che Hussin et al., [15] utilized 
the MMRDTM to determine solutions for fractional NLSEs. Che Hussin et al., [16] also utilized the 
method for solving the nonlinear KdV equation. Solutions for NLSEs with power-law nonlinearity 
were recently obtained by Che Hussin et al., [17] using MMRDTM. The approximation results are 
obtained through a reduction in the number of calculated terms, while maintaining high precision. In 
addition, results converge rapidly over an extended time frame. 

The multistep approach and the modification by adopting Adomian polynomials are embedded 
in this paper to perform the MMRDTM for solving nonlinear telegraph equations (NLTEs). 
Furthermore, we employed parametrization methods to generate Adomian polynomials without 
requiring time-consuming high-derivative calculations as proposed in Kataria and Vellaisamy [18]. In 
addition, Sabdin et al., [19] proposed a novel method named the Adaptive Hybrid Reduced 
Differential Transform Method (AHRDTM), which efficiently solves Nonlinear Schrödinger Equations 
(NLSEs) and reduces computational workload. Therefore, we propose technique that generates a 
fast-convergent sequence of analytical approximations over a wide time frame. Simultaneously, the 
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number of computed terms has greatly decreased by simplify the handling of nonlinear terms using 
Adomian polynomials 
 
2. Development of Multistep Modified Reduced Differential Transform Method 

 
Generally, lowercase letters represent the original function. For instance, the function 𝑤(𝑥, 𝑡), 

the letter 𝑤. In contrast, the capital letter 𝑊 in the function 𝑊𝑘(𝑥), 𝑊, signifies the transformed 
functions. Essentially, the differential transformation of the function w(x, t) = f(x)g(t) is obtained 
as in Keskin and Oturanç [20],  
 

𝑤(𝑥, 𝑡) = ∑ 𝐹(𝑖)𝑥𝑖 ∑ 𝐺(𝑗)𝑡𝑗 = ∑ 𝑊𝑘
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 (𝑥)𝑡𝑘,                     

 
where the function of 𝑤(𝑥, 𝑡) is denoted by the symbol 𝑊𝑘(𝑥). The following is a list of definitions 
that define some of the most fundamental properties of RDTM: 
 
Definition 1. Considering an analytically and continuously differentiable function 𝑤(𝑥, 𝑡) of time 
𝑡 and space variable 𝑥, the differential transformation of 𝑤(𝑥, 𝑡) is defined as follows 
 

𝑊𝑘(𝑥) =  [
𝜕𝑘

𝜕𝑡𝑘 𝑤(𝑥, 𝑡)]
𝑡=0

                        (2) 

 
where the transformed function is 𝑊𝑘(𝑥).  
 
Definition 2. The inverse transform of 𝑊𝑘(𝑥) is demonstrated as, 
 
𝑤(𝑥, 𝑡) = ∑ 𝑊𝑘(𝑥)𝑡𝑘∞

𝑘=0 .                        (3) 
 
Combination of Eq. (2) and Eq. (3) leads to the following equation: 
 

𝑤(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑤(𝑥, 𝑡)]
𝑡=0

𝑡𝑘∞
𝑘=0 .                       (4) 

 
Then, application of the fundamental properties of the MMRDTM to Eq. (1) yields: 
 

𝑊𝑘+2,𝑖(𝑥) = (
1

(𝑘+2)(𝑘+1)
) (

𝜕2

𝜕𝑥2
(𝑊𝑘,𝑖(𝑥)) − ∑ 𝐴𝑘,𝑖

𝑛
𝑘=0 − 𝑎(𝑘 + 1)𝑊𝑘+1,𝑖 + ℎ(𝑥, 𝑡))                (5) 

 
The initial condition is expressed as: 
 
𝑊0(𝑥) = 𝑓(𝑥).                         (6) 
 
Ray [11] uses the following notation to refer to the nonlinear term: 
 

𝑁𝑤(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑊0(𝑥), 𝑊1(𝑥), … , 𝑊𝑛(𝑥))∞
𝑛=0 .                      

 
The work of Kataria and Vellaisamy [18] demonstrates a proposed method for computing Adomian 
polynomials. 
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𝐴0 = 𝑁(𝑊0(𝑥)),                        

 

𝐴𝑛(𝑊0(𝑥), 𝑊1(𝑥), … , 𝑊𝑛(𝑥)) =
1

2𝜋
∫ 𝑁(∑ 𝑊𝑘(𝑥)𝑒𝑖𝑘𝑥𝑛

𝑘=0 )
𝜋

−𝜋
𝑒−𝑖𝑛𝜆 𝑑𝜆,     𝑛 ≥ 1.                

 
This approach avoids time-consuming computations with high derivatives. The values are obtained 
through iterative calculation, enabled by the combination of Eq. (6) and Eq. (5). In addition, the set 
of values of the inverse transformation, which are denoted by  {𝑊𝑘(𝑥)}𝑘=0

𝑛 , provides the following 
approximation to the solution: 
 

𝑤(𝑥, 𝑡) = ∑ 𝑊𝑘(𝑥)𝑡𝑘𝐾
𝑘=0 ,               𝑡 ∈ [0, 𝑇].                     

 
Then, 𝑀 subintervals [𝑡𝑚−1, 𝑡𝑚] are created by dividing the interval [0, 𝑇] into equal step sizes of 

𝑠 =
𝑇

𝑀
 and nodes 𝑡𝑚 = 𝑚𝑠 for 𝑚 = 1,2, … , 𝑀. The steps outlined below are utilised to compute 

MMRDTM. Start by solving the initial value problem for the interval [0, 𝑡1] using the modified RDTM. 
Then, based on the initial conditions,  
 
𝑤(𝑥, 0) = 𝑓0(𝑥), 𝑤1(𝑥, 0) =  𝑓1(𝑥),                      
 
the approximate result 
 
𝑤1(𝑥, 𝑡) = ∑ 𝑊𝑘,1(𝑥)𝑡𝑘,            𝐾

𝑘=0 𝑡 ∈ [0, 𝑡1]                    

 
is achieved. At each subinterval [𝑡𝑚−1, 𝑡𝑚], the initial conditions 
 
𝑤𝑚(𝑥, 𝑡𝑚−1) = 𝑤𝑚−1(𝑥, 𝑡𝑚−1),                      
 
(𝜕 𝜕𝑡⁄ )𝑤𝑚(𝑥, 𝑡𝑚−1) = (𝜕 𝜕𝑡⁄ )𝑤𝑚−1(𝑥, 𝑡𝑚−1),                    
 
are used for 𝑚 ≥ 2 and the multistep RDTM is employed to solve the initial value problem on the 
interval [𝑡𝑚−1, 𝑡𝑚], with 𝑡0 being replaced by 𝑡𝑚−1. The phase is carried out and repeated a number 
of 𝑚 = 1,2, … , 𝑀 times, such as, in order to obtain a sequence of approximate solutions denoted by 
 𝑤𝑚(𝑥, 𝑡) where 
 
𝑤𝑚(𝑥, 𝑡) = ∑ 𝑊𝑘,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝑘,        𝐾

𝑘=0 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚].                   
 

In conclusion, MMRDTM presents the subsequent solutions: 
 

𝑤(𝑥, 𝑡) = {

𝑤1(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1],          

𝑤2(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [𝑡1, 𝑡2],         
⋮   

𝑤𝑀(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀].

. 

 
Improved computing speed has made the new method MMRDTM simple to use for all values of 

𝑠. However, it is important to note that after the step size 𝑠 = 𝑇, the MMRDTM reduces to the 
modified RDTM. 
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3. Results and Discussions 
 
Two examples were solved using the MMRDTM to highlight the strengths and precision of this 

technique for solving NLTEs. 
 

Example 1. The second-order NLTE as stated by Yang et al., [21] has been considered, 
 
𝑤𝑡𝑡 + 𝑤𝑡 = 2𝑤𝑥𝑥 + 𝑤3 − 2𝑤                     (7) 
 
with the initial condition 

 

𝑤(𝑥, 0) =
√2

2
+

√2

2
coth (𝑥 + 5), 

 

𝑤𝑡(𝑥, 0) =
√2

2
(

3

2
−

3

2
coth((𝑥 + 5))

2
). 

                     

This exact solution of this equation is 
√2

2
+

√2

2
coth (𝑥 +

3𝑡

2
+ 5). 

 
The application of the fundamental properties of the MMRDTM to Eq. (7) allows us to obtain: 

 

𝑊𝑘+2,𝑖(𝑥) = (
1

(𝑘+2)(𝑘+1)
) (2

𝜕2

𝜕𝑥2 (𝑊𝑘,𝑖(𝑥)) + ∑ 𝐴𝑘,𝑖
𝑛
𝑘=0 − (𝑘 + 1)𝑊𝑘+1,𝑖 − 2𝑊𝑘,𝑖(𝑥)).              (8) 

 
The initial condition is expressed as: 

𝑊0(𝑥) =
√2

2
+

√2

2
coth(𝑥 + 5)                                                                                                                      (9) 

 
Then, 𝑀 subintervals [0, 𝑡1] are created by dividing the interval [0,2] into equal step sizes ℎ = 0.1, 
and nodes 𝑡𝑚 = 𝑚𝑠 for 𝑚 = 1,2, … ,20. The steps outlined below are utilised to compute MMRDTM. 
Start by solving the initial value problem for the interval [0, 𝑡1] using the modified RDTM. Then, based 
on the initial conditions,  
 
𝑤(𝑥, 0) = 𝑓0(𝑥), 𝑤1(𝑥, 0) =  𝑓1(𝑥),                      
 
the approximate result 
 
𝑤1(𝑥, 𝑡) = ∑ 𝑊𝑘,1(𝑥)𝑡𝑘,            𝐾

𝑘=0 𝑡 ∈ [0, 𝑡1]                    
 
is obtained. At each subinterval [𝑡𝑚−1, 𝑡𝑚], the initial conditions 
 
𝑤𝑚(𝑥, 𝑡𝑚−1) = 𝑤𝑚−1(𝑥, 𝑡𝑚−1),                      
 
(𝜕 𝜕𝑡⁄ )𝑤𝑚(𝑥, 𝑡𝑚−1) = (𝜕 𝜕𝑡⁄ )𝑤𝑚−1(𝑥, 𝑡𝑚−1),                    
are used for 𝑚 ≥ 2 and the multistep RDTM is employed to solve the initial value problem on the 
interval [𝑡𝑚−1, 𝑡𝑚], with 𝑡0 being replaced by 𝑡𝑚−1. The subsequent multistep scheme for iterative 



Warisan Journal of Mathematical Sciences and Engineering 

Volume 1, Issue 1 (2025) 1-11 

 

6 
 

application 𝑤(𝑥, 0) = 𝑓0(𝑥), 𝑤1(𝑥, 0) =  𝑎. The phase is carried out and repeated for 𝑚 = 1,2, … ,20 
times, such as, in order to obtain a sequence of approximate solutions denoted by  𝑤𝑚(𝑥, 𝑡) where 
 
𝑤𝑚(𝑥, 𝑡) = ∑ 𝑊𝑘,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝑘,        𝐾

𝑘=0 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚].                   

 
In conclusion, MMRDTM presents the subsequent solutions: 

 

𝑤(𝑥, 𝑡) = {

𝑤1(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡1]          

𝑤2(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [𝑡1, 𝑡2]        
⋮   

𝑤𝑀(𝑥, 𝑡), 𝑓𝑜𝑟 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀].

.                     

 
It is evident that the multistep approximate solutions exhibit superior accuracy compared to 

MRDTM when juxtaposed with the exact solutions for the nonlinear telegraph equations as 
evidenced by the performance error analyses achieved by MMRDTM are presented in Table 1. 
 

Table 1 
Error comparison of MMRDTM and MRDTM for Example 1 when 𝑥 = 0.5 
t Exact Solutions Absolute Error (MMRDTM) Absolute Error (MRDTM) 

0.1 1.414231060 0 6.2791 × 10−7 
0.2 1.414226525 1.0000 × 10−9 2.2839 × 10−6 
0.3 1.414223165 2.0000 × 10−9 4.8069 × 10−6 
0.4 1.414220675 1.3000 × 10−8 8.2647 × 10−6 
0.5 1.414218831 7.1000 × 10−8 1.2989 × 10−5 
0.6 1.414217467 2.3400 × 10−7 1.9703 × 10−5 
0.7 1.414216454 6.6800 × 10−7 2.9719 × 10−5 
0.8 1.414215705 1.6470 × 10−6 4.5216 × 10−5 
0.9 1.414215149 3.6430 × 10−6 6.9613 × 10−5 
1.0 1.414214739 7.3970 × 10−6 1.0801 × 10−4 
1.1 1.414214433 1.4016 × 10−5 1.6771 × 10−4 
1.2 1.414214207 2.5066 × 10−5 2.5887 × 10−4 
1.3 1.414214040 4.2727 × 10−5 3.9516 × 10−4 
1.4 1.414213916 6.9909 × 10−5 5.9457 × 10−4 
1.5 1.414213825 1.1043 × 10−4 8.8026 × 10−4 
1.6 1.414213757 1.6917 × 10−4 1.2816 × 10−3 
1.7 1.414213706 2.5230 × 10−4 1.8349 × 10−3 
1.8 1.414213669 3.6753 × 10−4 2.5853 × 10−3 
1.9 1.414213641 4.9688 × 10−4 3.5869 × 10−3 
2.0 1.414213621 7.3238 × 10−4 4.9048 × 10−3 

 
Figure 1(a) demonstrates the graphical representation of the exact solution. Figure 1(b) and 1(c) 

illustrate the graphical representations of the approximate solutions derived from the MMRDTM for  
𝑡 ∈  [−2,2] and 𝑥 ∈ [−2,2]and MRDTM for 𝑡 ∈ [−2,2] and 𝑥 ∈ [−2,2] methods, respectively. Based 
on the results, the proposed method has better approximations than MRDTM in term of accuracy for 
this type of equation.  
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(a) (b) 

 
(c) 

Fig. 1. Comparison graphs of semi-analytical methods with exact solution 

 
Example 2. The second-order NLTE as stated by Al-Badrani et al., [1] is taken into consideration 
 
𝑤𝑡𝑡 + 2𝑤𝑡 = 𝑤𝑥𝑥 + 𝑤3 − 𝑤                      (10) 
 
subject to the initial condition 
 

𝑤(𝑥, 0) =
1

2
+

1

2
tanh (

𝑥

8
+ 5),                      

 

𝑤𝑡(𝑥, 0) =
3

16
−

3

16
tanh (

𝑥

8
+ 5)

2

.                      
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The exact solution of this equation is 
1

2
+

1

2
tanh (

𝑥

8
+

3𝑡

8
+ 5).     

                  
The application of the fundamental properties of the MMRDTM to Eq. (10) allows us to obtain: 
 

𝑊𝑘+2,𝑖(𝑥) = (
1

(𝑘+2)(𝑘+1)
) (

𝜕2

𝜕𝑥2 (𝑊𝑘,𝑖(𝑥)) + ∑ 𝐴𝑘,𝑖
𝑛
𝑘=0 − 2(𝑘 + 1)𝑊𝑘+1,𝑖 − 𝑊𝑘,𝑖(𝑥)).              (11) 

 
From the initial condition, we write 

𝑊0(𝑥) =
1

2
+

1

2
tanh (

𝑥

8
+ 5)                      (12) 

 
The following solution is provided by the MMRDTM: 

 

𝑤(𝑥, 𝑡) = {

𝑤1(𝑥, 𝑡), 𝑡 ∈ [0, 0.1]    

𝑤2(𝑥, 𝑡),
⋮   

𝑡 ∈ [0.1, 0.2]
⋮

𝑤20(𝑥, 𝑡), 𝑡 ∈ [1.9, 2.0].

.                     

 
The multistep approximate solutions for this nonlinear telegraph problem closely approximate 

the exact solutions, as evidenced by the performance error analyses of MMRDTM presented in Table 
2. 

 
Table 2 
Error comparison of MMRDTM and MRDTM for Example 1 when 𝑥 = 0.5 
t Exact Solutions Absolute Error (MMRDTM) Absolute Error (MRDTM) 

0.1 0.9999628310 3.00000 × 10−10 5.49600 × 10−7 
0.2 0.9999655166 1.00000 × 10−10 2.02160 × 10−6 
0.3 0.9999680082 0 4.20370 × 10−6 
0.4 0.9999703198 1.00000 × 10−10  6.94440 × 10−6 
0.5 0.9999724643 0 1.01424 × 10−5 
0.6 0.9999744539 1.00000 × 10−10 1.37492 × 10−5 
0.7 0.9999762997 1.000000 × 10−10 1.77724 × 10−5 
0.8 0.9999780122 3.000000 × 10−10 2.22915 × 10−5 
0.9 0.9999815421 5.000000 × 10−10 2.48634 × 10−5 
1.0 0.9999810748 1.00000 × 10−9 3.36270 × 10−5 
1.1 0.9999824423 2.30000 × 10−9 4.11888 × 10−5 
1.2 0.9999837110 2.20000 × 10−9 5.08169 × 10−5 
1.3 0.9999848879 4.70000 × 10−9 6.34169 × 10−5 
1.4 0.9999859798 9.70000 × 10−9 8.02057 × 10−5 
1.5 0.9999869928 1.58000 × 10−8 1.027778 × 10−4 
1.6 0.9999879327 2.56000 × 10−8 1.331750 × 10−4 
1.7 0.9999888046 3.71000 × 10−8 1.739749 × 10−4 
1.8 0.9999896136 6.03000 × 10−8 2.283753 × 10−4 
1.9 0.9999903640 8.40000 × 10−8 3.002801 × 10−4 
2.0 0.9999910603 9.67000 × 10−8 3.944209 × 10−4 

 
Consequently, the exact solution is presented in Figure 2(a). Figure 2(b) and 2(c) illustrate the 

approximate solutions obtained using MMRDTM for 𝑡 ∈  [−2,2] and 𝑥 ∈  [−2,2] and MRDTM for 
𝑡 ∈  [−2,2] and 𝑥 ∈  [−2,2] respectively. Based on the results, the proposed method has better 
approximations than MRDTM in term of accuracy for this type of equation.  
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(a) (b) 

 
(c) 

Fig. 2. Comparison graphs of semi-analytical methods with the exact solution 

 
4. Conclusions 
 

In this paper, MMRDTM was successfully employed to derive a sequence of solutions for second-
order nonlinear telegraph equations. The obtained solutions were compared to exact solutions and 
MRDTM solutions. Moreover, the modification was carried out in a multi-step approach by the 
replacement of the nonlinear term with its Adomian polynomials. Consequently, the findings and 
graphic representations showed that the approximations to nonlinear telegraph equations had been 
obtained with a high degree of accuracy. Hence, it can be asserted that the analytic approximation 
solutions generated by MMRDTM for this class of equations exhibit enhanced effectiveness, 
consistency, and accuracy relative to those obtained through MRDTM. The computations presented 
in this study were executed using the Maple software package. 
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