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The first-order polarization tensor (PT) is the basic term of the generalized polarization 
tensor (GPT), which represents the asymptotic series in the form of an integral 
equation. It is crucial in engineering applications, such as material characterization and 
electromagnetic modeling. Many approaches have been implemented to enhance 
computational efficiency and accuracy in the numerical computation of the first-order 
polarization tensor. Among these methods, two have received the attention of the 
researchers, but their comparative effectiveness remains uncertain. Hence, this study 
aims to analyse and compare these two methods in approximating the first-order 
polarization tensor for a specific object inclusion, the sphere. The methodology 
involves numerical simulations where the performance of both methods is observed. 
From the results obtained, both methods satisfy the theoretical statement that as the 
number of mesh discretization increases, the accuracy of the numerical simulations 
improves. Two types of software are used in this study: Netgen Mesh Generator and 
MATLAB, which assist in the pre-processing, processing, and post-processing stages of 
numerical computation. The simulation and numerical examples will help verify the 
comparative analysis of both methods. 
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1. Introduction 
 

First order polarization tensor (PT) is a mathematical tool that is widely used to characterize 
objects, as it has the ability to represent the shape of an object represented in 3 3  matrix in xyz  

direction. Various applications, such as metal detection, use PT for which PT has the ability to aid in 
analyzing as well as characterizing the electromagnetic signature of any metallic object inclusions. 
Hence, accurate numerical computation of first order PT is essential in enhancing the precision of the 
classification as well as identification of the object inclusions which is crucial in application such as 
security screening, exploration of archeological object as well as detection of unexploded ordnance 
[1]. Not even that, since the information about an object properties, conductivity as well as shape of 
the given object can be interpreted by PT, for application like eddy current response, PT influence 
directly the eddy current response and scatter field measurements. The properties of PT make it an 
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important tool that can be used in the application of electromagnetic imaging and inverse problem. 
Other application that can be seen from PT is in the system of metal detection where most of the 
system relies on the inverse problem related to propagation of electromagnetic wave. A metal can 
be detected by observing the response of the materials to an experienced magnetic field. This 
response can be determined by the properties, position of the magnetic field as well as the shape of 
the object inclusion [2]. Due to this, an accurate numerical computation of PT must be obtained to 
ensure that we have a reliable result, which has yet to be fully addressed. To date, there were many 
computational techniques has been implemented to solve the first order PT such as semi-algebraic 
method, boundary element method (BEM), finite element method (FEM) and many others [3-7,14-
16]. However, when these method is implemented in the calculation of PT, they often come with a 
higher computation cost since the PT integral consist of singularity which will lead to a complex 
computation of the integral. To achieve an accurate numerical computation of PT, a finer mesh need 
to be used, where in this case, it will increase the computational complexity and this will lead to 
inefficient for real time application such as metal detection for which we know, the application need 
a faster result. This can be more challenging if the object inclusion is irregular in it shapes and highly 
detailed object inclusion [6]. Moreover, numerical integration techniques may suffer from instability 
when applied to objects with intricate boundary conditions, leading to potential inaccuracies in the 
polarization tensor estimation. 

Other numerical techniques that has been explored by researchers are multivariate polynomial 
interpolation, for which this method can improve both the accuracy and computational efficiency of 
PT computation. This is due to its ability to approximate the values of the 9 tensor components based 
on a finite sample set of data points [9,10]. In a study conducted in a previous study [11], the 
multivariate polynomial interpolation was used, where the researchers constructed the interpolating 
polynomial function to estimate the first order PT and the polynomial function is represented as: 

 
2 2

0 1 2 3 4 5( , ) ,        for 1,2,3,m n

i iP x y C C y C x C y C xy C x C x y i k= + + + + + + + =                      (1) 

 

where ( , )
i

P x y  is the polynomial function with constant coefficient, 0 1 2
, , , ,

i
C C C C .  

On the other hand, as aforementioned, a finite element based technique is also used by 
researcher to compute first order PT where this technique can improve the accuracy of the numerical 
solution by ensuring higher order approximations, and is widely used in the application of 
electromagnetic distribution. The ability to deal with complex boundary conditions makes this 
numerical technique more effective than other numerical techniques. In the research conducted by 
Sukri et al., [10], it is observed that, as a quadratic element was used in the computation of PT, the 
result shows higher accuracy when it is compared with its analytical solution. Despite the advantages 
offered by both multivariate interpolation and quadratic element integration, a direct comparison of 
their effectiveness in computing the first-order polarization tensor has not been extensively 
explored. While both methods offer potential improvements over traditional numerical integration 
techniques, their relative performance in terms of computational efficiency, accuracy, and 
applicability to real-world metal detection scenarios, for example, remains an open question. This 
study aims to bridge this gap by conducting a comparative analysis of these two computational 
techniques, assessing their strengths and limitations in different problem domains. 

To achieve a comprehensive evaluation, this study will consider a benchmark case which includes 
simple geometric shapes such as a sphere. By comparing the accuracy, computational time, and 
numerical stability of multivariate interpolation and quadratic element integration, we aim to provide 
insights that can guide the selection of the most appropriate method for different metal detection 
scenarios. One parameter that is considered in this paper is the conductivity of the object inclusion. 
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This parameter is chosen as the primary parameter because, for example, in metal detection 
applications, this parameter will determine the electromagnetic response of the object inclusion and 
can influence the representation of the matrix of first order PT. However, we cannot deny that other 
parameters such as the shape of the object, permeability and frequency of the applied 
electromagnetic fields also play an important role in the PT representation. By considering this 
parameter, we will observe and compare the behavior of both methods with respect to increasing 
values of conductivity of the object inclusion. The rest of this paper is structured as follows: Section 
2 presents the mathematical formulation of the first-order polarization tensor, providing a 
theoretical background for both computation methods. Section 3 outlines the methodologies 
employed for multivariate interpolation and quadratic element integration, detailing their 
implementation and computational considerations. Section 4 discusses the comparative results 
obtained from numerical experiments, analyzing the advantages and limitations of each technique. 
Finally, Section 5 concludes with key findings and potential future research directions, highlighting 
areas where further improvements in FPT computation can be made. Through this comparative 
study, we aim to contribute to the ongoing advancements in metal detection technology and 
electromagnetic modeling. By evaluating the trade-offs between accuracy and computational 
efficiency, we hope to provide a clear framework for selecting the most appropriate numerical 
technique for different applications. Our findings may serve as a valuable reference for researchers 
and engineers seeking to optimize polarization tensor computations in practical scenarios, ultimately 
leading to enhanced detection capabilities and more efficient electromagnetic analysis techniques. 
 
2. Mathematical Framework of First Order Polarization Tensor  
2.1 Main Integral of PT 

 
In this subsection, the main integral for formulation of PT which consist of three main equations 

is defined. These three equations are usually used in the application of effective medium theories, 
inverse problems and electromagnetic scattering where it characterizes the response of the object 
inclusion. The first order PT integral can be represented by a rank two tensor which comes from the 
generalized form of PT (GPT) for which the leading term is the first order PT. It is represented in 
integral equation for domain   as in Eq. (2) 

 

( , ) ( ) ( ),            j

iM k Y Y d Y Y


 =                             (2) 

 
where k  is the conductivity of the object inclusion  , Y  is the element of the object domain while 

( )
i

Y  is defined as linear system of equation as in Eq. (3) 

 

( ) ( )
1

* ˆ( ) ,           .i B XY AI K V Y
−

 = −                             (3) 

 

Eq. (3) is in the form of linear system of equation where, ( ) ( )1 2 2A k k= + −  while ˆ
X

V  is the unit 

normal vector of element X  represented as, 
 

( )( )ˆ .i

X XV v X Y=                               (4) 
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*

B
K  is in the form of Cauchy principal integral (PV) as in Eq. (5) where ( )2( )X L    and ( )2L   

is integrable function on domain  .  
 

*

3

,1
( ) ( ) ( ).

4

ii j X

B i i j j

i j

X Y v
K X PV Y d Y

X Y





−
 = 

−
                           (5) 

 

From Eq. (5), i j
X Y−  is in the difference between the elements in domain  . Hence, in order 

to compute the first order PT, we need to solve for all three equations as in Eq. (2), (3) and (5) for 
which the only parameter that we will use in this study is only conductivity of the object inclusion. 
For next subsection, we are going to review the analytical solution of the first order PT for a sphere 
that has been described by previous researcher.  
 
2.2 Explicit Formulae of the First Order PT  
 

The analytical expression of the first order PT of Pólya-Szegö for disk and ellipse has been derived 
by Brühl et al., [12] which is expressed in matrix of 2 by 2 as 

 

( ) 1

2

0
( , ) 1 ,

0
A

M
M k k

M

 
 = −   

 
                            (6) 

 

where the volume of the object (either disk or ellipse) is denoted as  , while the first element and 

second element can be computed using the following equation with semi-axes a  and b  
 

1 2
  and   .

a b a b
M M

a kb b ka

+ +
= =

+ +
                            (7) 

 
  In three dimensional case, the analytical expression has been derived and stated first for 

ellipsoid object inclusion. The semi-principal axes ,a b  and c  of the ellipsoid with general equation 

1
* * *x y z

a b c
+ + = , for 0 c b a   , its resulting expression for the analytical solution of the first 

order PT is 
 

( )
1

2

3

0 0

( , ) 1 0 0 .

0 0

A

M

M k k M

M

 
 

 = − 
 
  

                           (8) 

 

where 
1 2
,M M  and 

3
M  are defined by 
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          (9) 

 
From the analytical solution of ellipsoid, in order to get an analytical solution of a sphere, which 

in this case our main concern of the study, we equate the semi-principal axes of an ellipsoid, 
* * *a b c= = , this will make the object inclusion to become sphere and hence, the resulting element 

inside the analytical solution of PT, will become, ( )1 2 3 3 2M M M k= = = + , yield to 

 

( )
1

2

3

0 0

( , ) 1 0 0

0 0

A

M

M k k M

M

 
 

 = − 
 
  

                                                   (10) 

 
The derivation of the analytical solution for first order PT for sphere and ellipsoid can be used as 

a benchmark solution for other irregular object inclusion. Next subsection will present the 
mathematical modelling by using proposed methods which is the multivariate polynomial as well as 
quadratic element integration. 
       
3. Mathematical Modelling  
3.1 Discretization of the Object Inclusion: NG Solver 
 

In this section, we will discuss the discretization of the object inclusion which is sphere by using 
a meshing tools. To date, there were many meshing tools that has been developed by a researcher 
such as in [17,18]. However, in this research, Netgen Mesh Generator or simply called NG Solver will 
be used for the discretization of the object inclusion. The latest version of NG Solver is version 6.2 
where it is developed by Joachim Schöberl in 1997 [13]. The meshing strategies is available to the 
user such as, for simple geometries: structured grid, can be triangular meshes or tetrahedral meshes 
while for complex geometry: it uses unstructured mesh. The computation with the help of NG Solver 
is enhanced for which it allows the adaptive meshing technique that enables the refinement criteria 
for meshes with solution gradients or any other parameters. The interface of the meshing tools is 
demonstrated in Figure 1, while Figure 2 show the geometry setup interface without the refinement. 
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Fig. 1. The interface of the meshing tools, NG Solver by 
Joachim Schöberl  

 

 
Fig. 2. The interface of the mesh generation for complex configuration 
by NG Solver 

 
Since NG Solver provide a high quality in terms of mesh generation which is capable in dealing 

with structured geometries as well as unstructured meshes in complex geometries, the integration 
of NG Solver with the numerical computation will provide an efficient and reliable solution that can 
be used in real-life application. 

 
3.2 Transformation of Main Integral of First Order PT: Quadratic Element Integration 

 
This subsection will briefly recall the mathematical methodology of first order PT by using 

quadratic element integration by Sukri et al., [10]. The mathematical development involved 
formulation of shape functions, Gaussian quadrature and the computation of the first order PT based 



Warisan Journal of Mathematical Sciences and Engineering 

Volume 1, Issue 1 (2025) 48-59 

54 
 

on the three main diagonal as in Eq. (2), (3) and (5). The researcher transforms the integral of PT in 

(5) to become a summation function containing the Jacobian matrix, ( ),J    in the form of xyz

coordinates with shape functions, ( )
6

1

,
i i

i

x x N  
=

= , ( )
6

1

,
i i

i

y y N  
=

=  and ( )
6

1

,
i i

i

z z N  
=

=  as 

 

( ) ( ) ( )
6

1

( , ) , , ,
Tj

i l l

l

M k Y wY J J   
=

 =                                                  (11) 

 

where ( ), , ,
T

J x x y y z z        =    while the linear system of equation is written as 

 

( ) ( ) ( )
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= = −                                                   (12) 

 

The shape function, ( ),
i

N    are represented as 
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                                                  (13) 

 

The Cauchy Principal Value Integral, *

B
K  approximation is also expressed as the summation 

containing the weighting function as well as the Jacobian matrix, ( ),J    where Eq. (5) is transformed 

to 
  

( ) ( )
1,2,3 1,2,3

*

3
1,2,3 1,2,3, 1

,1
( ) ( ) , , .

4

i j i

i j

N
X T

B i i j l

i j

X Y v
K X Y w J J

X Y

 

 

   


= =

= ==

−
 =  

−
                                   (14) 

 
In subsection 3.2, we have successfully transformed the main integral of first order PT by using 

quadratic element integration. By using Gaussian quadrature as well as the quadratic basis function 
to accurately approximate the integral over the domain of PT, this method provides a more accurate 
numerical results and efficient for complex geometrical configuration where the linear elements 
integration can be no longer efficient. For next section, we further explore the transformation of the 
main integral using multivariate polynomial interpolation that has been developed by Sukri et al., 
[11].   

 
3.3 Transformation of Main Integral of First Order PT: Multivariate Polynomial Interpolation 
 

Next, the transformation of the main integral of the first order PT using multivariate polynomial 
approach is explored for which we try to interpolate the function in the Cauchy Principal Value 
integral using a polynomial as stated in Eq. (1). In engineering, multivariate polynomial interpolation 
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is a technique that is widely used to approximate the scattered data on a closed surface [19,20]. The 
flexibility of the polynomial to fit the integral of PT can enhance the precision and the accuracy of PT 
computation which is crucial for intricate geometries with varying material properties. Hence, by 
using Eq. (5), let define the function inside the integral to become  

  

( ) ( ) ( )

1,2,3 1,2,3 1,2,3

3
1,2,3 1,2,3

,
, , , .

i j Xi

i j

T
X Y v

F J J

X Y

  

 

     

= = =

= =

−
= 

−

                                               (15) 

 
Function as in (15) can be represented by a polynomial function of   and   which is 

  

( )
33

0 0

, .
q l

k l

ij

p k l

F C   
+ =

= + 

=                                                   (16) 

 

Function ( ),F    shall minimize the sum of errors  

 

( ) ( )
2

1

, ,
n

i i i i i

i

S w F F   
=

 = −                                                  (17) 

 
In order to solve for the polynomial coefficient in (16), partial derivatives are applied to Eq. (17) 

and all equations will be equated to 0. The coefficient ij
C  can be easily find by using the matrix 

system. And by finding the coefficient, the function of F can be interpolate by using F . By 
completing the computation similar to quadratic, the matrix for first order PT can be solved. For next 
section, we presented the result and discussion as these methods are compared for which increasing 
number of surface elements are used to study the behaviour of the matrix formed by both 
computations.  

 
4. Results and Discussion 
3.1 The Effect of Conductivity towards the Element of First Order PT 
 

In this section, we will discuss the results obtained based on the impact of conductivity changes 
towards the values of element of first order PT for a sphere with a radius of 0.01, discretized using 3 
types of meshing option which is 44 72 118, ,N =  and 620N =  meshes. In the context of scattering 

and imaging problem, conductivity is the critical parameter in determining the behaviour of PT 
elements, where it influence the electromagnetic field and the object inclusion. Figure 3 until Figure 
6 depicts the comparison between the results obtained for first order PT for a spherical object 

inclusion with different values of conductivity, 40 001 0 01 0 11 5 10 100 1000 3000 5000 10. , . , . , . , , , , , ,k =  and 
510 . Based on the figures (Figure 3 until Figure 6), as the conductivity increases, the values of 

elements for varying N  is diverge from the exact solutions for both multivariate polynomial 
interpolation as well as quadratic element integration. However, as the number of surface elements 
increases, the numerical solutions by using multivariate polynomial interpolation shows higher 
convergence compared to quadratic element integration. This is due to the interpolation function, 
where, instead of directly compute the integral of PT, the function approximate the results of the 

integral of *

B
K  which lead to reducing values of truncation error. This lead to an accurate numerical 

solution of first order PT with less computational error.   
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From the numerical results, it depicts that multivariate polynomial interpolation has higher 
convergence which suggest that it is more robust for varying conductivity materials rather than 
quadratic element integration. This is practical in the application of materials characterization and 
inverse problem for which small errors can significantly affect the results obtained. It also potentially 
applicable in security screening and archaeological exploration where the truncation error for the 
results could be minimize. It is also can be important in real time metal detection systems where 
accurate as well as rapid detection is crucial. However, for higher order polynomial, the 
computational cost could be higher. 

While these results demonstrate the comparative effectiveness of multivariate polynomial 
interpolation as well as quadratic element integration for computing first order polarization tensor, 
there’s still several limitations that we need to acknowledge. First, relatively simple geometry has 
been used in this study, whilst most of the application of real life problems involve an irregular and 
complex shape, which relies on more complex numerical approximations with high level of mesh 
discretization as well as intricate boundary conditions. Another limitation that can be seen from this 
study is, the computational cost using multivariate polynomial interpolation which involve high order 
polynomials is higher, where this can hinder the applicability of the methods to be applied in real life 
problems.   

 

 
Fig. 3. Element values as a function of conductivity for a sphere with radius 0 01.  and 44N =  mesh, 
comparing exact solutions, multivariate polynomial approximations, and quadratic methods for main 

diagonal 
1 2 3

  and , ,M M M  
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Fig. 4. Element values as a function of conductivity for a sphere with radius 0 01.  and 72N =  mesh, comparing 
exact solutions, multivariate polynomial approximations, and quadratic methods for main diagonal 

1 2 3
  and , ,M M M  

 

 
Fig. 5. Element values as a function of conductivity for a sphere with radius 0 01.  and 118N =  mesh, 
comparing exact solutions, multivariate polynomial approximations, and quadratic methods for main diagonal 

1 2 3
  and , ,M M M  
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Fig. 6. Element values as a function of conductivity for a sphere with radius 0 01.  and 118N =  mesh, 
comparing exact solutions, multivariate polynomial approximations, and quadratic methods for main diagonal 

1 2 3
  and , ,M M M  

 
5. Conclusions 
 

The comparison between two numerical methods for approximating first-order PT has been 
analysed and compared for a spherical object inclusion. For this purpose, different discretizations of 
the mesh, which are 44 72 118, ,N =  and 620N =  meshes, were used. This study reveals that when 

comparing both methods in the context of conductivity, the multivariate polynomial interpolation 
demonstrates higher convergence compared to quadratic element integration, even as the mesh 
discretization increases. The truncation error also reduces when multivariate polynomial 
interpolation is used, leading to higher precision in numerical solutions. This study concludes that 
multivariate polynomial interpolation is a more effective approach for computing the first-order PT, 
particularly for objects with varying conductivity, which is widely used in material characterization 
and electromagnetic modeling. This study could be extended to explore the application of 
multivariate polynomial interpolation and quadratic element integration for geometrical structures 
in real-life applications, since most object inclusions are irregular in shape. Besides that, future 
research can focus on material properties such as the object’s permeability and permittivity rather 
than conductivity. Understanding the influence of the object’s properties on the behaviour of PT 
could be the key starting point to achieving accurate electromagnetic modeling.   
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